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A B S T R A C T

Humanlike but not perfectly human agents frequently evoke feelings of eeriness, a phenomenon termed the
Uncanny Valley (UV). The Categorical Perception Hypothesis proposes that effects associated with the UV are due to
uncertainty as to whether to categorize agents falling into the valley as “human” or “nonhuman”. However, since
UV studies have traditionally looked at agents of varying human-likeness, it remains unclear whether UV-related
effects are due to categorical uncertainty in general or are specifically evoked by categorizations that require
decisions regarding an agent's human-likeness. Here, we used mouse tracking to determine whether agent
spectra with (i.e., robot-human) and without (i.e., robot-animal and robot-stuffed animal) a human endpoint
cause phenomena related to categorical perception to comparable extents. Specifically, we compared human and
nonhuman agent spectra with respect to existence and location of a category boundary (H1-1 and H2-1), as well
as the magnitude of cognitive conflict around the boundary (H1-2 and H2-2). The results show that human and
nonhuman spectra exhibit category boundaries (H1-1) at which cognitive conflict is higher than for less am-
biguous parts of the spectra (H1-2). However, in human agent spectra cognitive conflict maxima were more
pronounced than for nonhuman agent spectra (H2-1) and category boundaries were shifted towards the human
endpoint of the spectrum (H2-2). Overall, these results suggest a quantitatively, though not qualitatively, dif-
ferent categorization process for spectra containing human endpoints. Possible reasons and the impact for virtual
and robotic agent design are discussed.

1. Introduction

Very human-like, though not perfectly human, robot entities are
frequently perceived more negatively than agents that are un-
ambiguously human or nonhuman, a phenomenon termed the Uncanny
Valley (UV). For example, a study on human-computer interaction (HCI)
has shown that embodied avatars are found to be more uncanny and to
more strongly evoke negative emotions than their text-based counter-
parts (Ciechanowski et al., 2018). Being exposed to ``uncanny” agents
that are neither clearly human nor nonhuman is also associated with a
depletion of cognitive resources over time and negatively impacts cog-
nitive performance during human-robot interaction (Wiese et al., 2019).
The aim of the current experiment is to examine to what extent phe-
nomena previously associated with the UV, such as increased cognitive
conflict processing due to categorical ambiguity, are specific to cate-
gorical uncertainty regarding an agent's human-likeness (i.e., category A
vs. human) as opposed to representing general effects associated with
categorization processes (i.e., category A vs. any category B).

Although empirical evidence in support of the existence of the UV has
been increasing recently (Chattopadhyay and MacDorman, 2016;
MacDorman and Chattopadhyay, 2016; Mathur and Reichling, 2016),
there is no clear consensus yet regarding its theoretical underpinnings (for
a review, see Kätsyri et al., 2015). Two theories that receive most support
in the literature are the categorical perception hypothesis and the perceptual
mismatch hypothesis: the categorical perception hypothesis purports that
the physical appearance of humanoid agents triggers a categorization-re-
lated cognitive conflict as to whether the agents represent human or
nonhuman entities, and that this conflict may result in negative emotional
evaluations due to increased cognitive processing costs needed to resolve
categorical ambiguities (Cheetham et al., 2011). The perceptual mismatch
hypothesis states that negative affinity associated with ``uncanny” stimuli
would be caused by an inconsistency between the human-likeness levels of
specific sensory signals contained in nonhuman images, such as grossly
enlarged eyes displayed on an otherwise perfectly human-like face
(MacDorman et al., 2009). The categorical perception hypothesis is in line
with insights from evolutionary biology linking categorization to survival
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and the failure to categorize stimuli to negative emotional responses
(Burleigh and Schoenherr, 2015). Psychological research has further de-
monstrated that category boundaries exist for identification of facial
images along morphed spectra (Cheetham et al., 2013, 2011, 2014; Looser
and Wheatley, 2010; Yamada et al., 2013; see Fig. 1 for an illustration of
the category boundary concept), and that discrimination performance
reaches its peak when agent images straddle the category boundary, in-
dicating categorical ambiguity (Cheetham et al., 2011, 2014; Looser and
Wheatley, 2010). Increased categorical ambiguity has been reported to
coincide with negative stimulus evaluations in some studies (Burleigh
et al., 2013; Ferrey et al., 2015; Yamada et al., 2013) but not in others
(Cheetham et al., 2014; Looser and Wheatley, 2010; MacDorman and
Chattopadhyay, 2016). Studies on the perceptual mismatch hypothesis
suggest that the most negative affective evaluations are elicited by images
where the mismatch between a subset of realistic (e.g., human face shape)
and a subset of unrealistic image features (e.g., enlarged eyes) is maximal
(MacDorman et al., 2009; Mäkäräinen et al., 2014; Mitchell et al., 2011;
Seyama and Nagayama, 2007), and that maximal negative affinity does
not coincide with maximal categorical uncertainty (when manipulating
human-likeness within a category from rendered to real; see
MacDorman and Chattopadhyay, 2016).

Despite the progress that has been made in recent years in under-
standing the UV (with good empirical evidence for the perceptual
mismatch hypothesis and some evidence for the categorical mismatch
hypothesis; see Kätsyri et al., 2015), it remains unclear whether cog-
nitive conflict processing due to categorical uncertainty is specifically
related to the perception of human-likeness (i.e., using spectra with a
human endpoint) or rather occurs generally for all sorts of categorically
ambiguous stimuli (i.e., for spectra without human endpoint), and
whether categorical uncertainty and negative affinity coincide when
using cross-category spectra (i.e., robot-human, -animal, or -stuffed
animal). The aim of the present experiment is to examine whether
cognitive conflict processing in response to categorical ambiguity is
specific to nonhuman-human judgments or occurs in a similar fashion
for nonhuman-nonhuman judgments.

A prominent way to investigate categorical perception is to present
morphed images, where a picture of category A (e.g., robot) is morphed
into a picture of category B (e.g., human) in percent steps resulting in a
sequence of stimuli gradually decreasing in A-likeness and increasing in B-
likeness (see Fig. 1) and ask participants to categorize them as belonging to
category A or category B (i.e., forced choice task). Using such a procedure
with nonhuman agents as category A (i.e., left end of the spectrum) and
human agents as category B (i.e., right end of the spectrum), it was found

that categorization follows a qualitative pattern, with substantial changes
in categorization decisions only at the nonhuman-human category
boundary (i.e., % physical humanness of the image that 50% of people
categorize as ``human”: at around 60–70% physical humanness; see Fig. 1)
but relatively constant categorization decisions to the left and right of the
boundary (Cheetham et al., 2011; Hackel et al., 2014; Looser and
Wheatley, 2010; Martini et al., 2016; Mathur and Reichling, 2016;
Yamada et al., 2013). Although pairs of morphed stimuli straddling the
nonhuman-human category boundary were easier to discriminate than
equally similar pairs of stimuli located on the same side of the boundary
(improved performance on same-different judgments; Cheetham et al.,
2013), high reaction times indicate that morphed stimuli straddling the
nonhuman-human category boundary are difficult to categorize
(Yamada et al., 2013). In another study researching robotic agents, high
reaction times have been associated with maximal negative affective
evaluations (Mathur and Reichling, 2016). Negative evaluations of stimuli
located at the category boundary have been associated with co-activation
of competing categories, which requires additional cognitive resources to
process (Ferrey et al., 2015; Meng and Tong, 2004; Sterzer et al., 2009),
and negatively impacts performance on tasks that are sensitive to the
drainage of cognitive resources over time (Mandell et al., 2017; Weis and
Wiese, 2017; Wiese et al., 2019).

How strongly ambiguous stimuli co-activate different categories and
induce cognitive conflict between multiple categorizations can be
measured using mouse tracking, a method in which mouse trajectories
are recorded during a forced-choice task with labels representing ca-
tegory A and B in the top corners of the computer screen and the to-be-
evaluated stimulus at the center bottom (for details, see Section 2.2).
Previous studies found that the mouse movements’ curvatures posi-
tively correlate with the degree of cognitive conflict the participants
experience during categorization (Freeman and Ambady, 2010), and
that negative affective evaluations reach their maximum where cate-
gorization is most difficult (Yamada et al., 2013), indicating that ne-
gative affective reactions to categorically ambiguous stimuli may be
linked to increased cognitive processing effort and decreased cognitive
fluency (Winkielman et al., 2003).

Although these studies provide evidence that morph spectra con-
taining ``human”, such as human-robot (Cheetham et al., 2011; Martini
et al., 2016; Mathur and Reichling, 2016) or human-doll (Hackel et al.,
2014; Looser and Wheatley, 2010) spectra, show a categorical pattern
with the maximum of categorization difficulty and the minimum of
positive stimulus evaluations coinciding at the category boundary (e.g.,
Mathur and Reichling, 2016), it is unclear whether this pattern would
universally be observed for any kind of categorization or whether it is
specific to categorizations that require a ``human” versus ``nonhuman”
categorization. Whether evaluation patterns similar to those observed
for nonhuman-human spectra would also be observed for spectra not
containing the human category is an important question, as it informs
us about whether phenomena related to the uncanny valley are specific
to perceptions of human-likeness or generally related to all sorts of
categorization processes. The assumption that the UV may be specific to
perceptions of human-likeness is in line with several observations em-
phasizing the special status of human versus nonhuman stimuli in so-
cial-cognitive processing: First, being exposed to human agents acti-
vates brain areas responsible for social-cognitive processing more
strongly than being exposed to nonhuman agents (Looser et al., 2013;
Özdem et al., 2016; Wagner et al., 2011; Wheatley et al., 2011; Wiese
et al., 2018; Wykowska et al., 2014), and activation in social brain areas
is known to reflect the social relevance of observed behaviors and to
enable reactions to observed actions that are social in nature (different
from those triggered by nonhuman agents; Waytz et al., 2010; Wiese
et al., 2017; for reviews). Second, social categorization is a highly
specialized process with different neural networks being involved in the
identification of living versus non-living (Forde and Humphreys, 2002),
primate versus non-primate (Tovée and Cohen-Tovée, 1993; Young and
Yamane, 1992), and human versus animal (Assal et al., 1984; McNeil

Fig. 1. Visualization of the category boundary. A logistic function is fitted to
categorization data (i.e., percentage of trials the respective agent was cate-
gorized as human; black line). The Morph Level at which categorization is most
ambiguous, i.e. where the agent was categorized as human in 50% of trials and
as nonhuman in 50% of trials, is called the category boundary (here at 70%
Morph Level; dotted line).
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and Warrington, 1993) stimuli, which can potentially affect the extent
to which ambiguous stimuli co-activate multiple category representa-
tions and trigger categorization conflicts. In line with this assumption,
categorizations within the ``human” category (e.g., male vs. female;
Yamada et al., 2013) induce weaker negative affective evaluations than
human versus nonhuman categorizations (e.g., human vs. robot;
Mathur and Reichling, 2016). Third, observers seem to be more sensi-
tive to detecting changes in physical features of ingroup versus out-
group facial stimuli (Hugenberg et al., 2010, 2013), with the con-
sequence that more confirmatory perceptual evidence is needed before
a stimulus is categorized as belonging to an observer's ingroup (e.g.,
human). As a result, the category boundaries are shifted from the center
of the spectrum towards the ingroup side of the spectrum (e.g., Hackel
et al., 2014; Sigala et al., 2011), which would match the location of the
UV that is typically observed at around 70% human-likeness (for in-
group human observers).

To date, only very few studies have examined UV patterns in morph
spectra not containing ``human” stimuli (e.g., Campbell et al., 1997; Ferrey
et al., 2015; Steckenfinger and Ghazanfar, 2009; Yamada et al., 2012,
2013). Yamada et al. (2013), for instance, used human and dog stimuli
varying in their degree of realism from cartoonish to stuffed to real to show
that increased categorization difficulty and negative evaluations were ob-
servable at transition points from cartoonish to stuffed to real within a given
category. Increased categorization difficulty was also noticeable for animal-
animal and fruit-fruit morphs (Ferrey et al., 2015; Yamada et al., 2012), as
well as when macaque morphs with different degrees of realism were
presented to macaque monkeys (Steckenfinger and Ghazanfar, 2009). Al-
though these studies have shown that increased categorization difficulty at
the category boundary can be observed for morph spectra not containing
“human”, they cannot determine whether spectra requiring human versus
nonhuman categorizations (e.g., robot vs. human) differ from nonhuman
versus nonhuman categorizations (e.g., robot vs. animal) in terms of the
location of the category boundary and the extent of cognitive conflict that
categorically ambiguous stimuli induce. To the best of our knowledge, the
only study that has compared nonhuman-human and nonhuman-nonhuman
spectra has morphed the same nonhuman starting point (i.e., macaque) into
nonhuman (i.e., cow) or human endpoints and showed that independent of
the specific endpoint, categorizations were most difficult at the category
boundary at around 40–60% ``category-B-ness” (Campbell et al., 1997).
Although this finding suggests that the area of highest categorization diffi-
culty is located around the category boundary, it does not precisely de-
termine the location of spectrum-specific category boundaries and does not
assess if categorization difficulty is comparable across spectra or sig-
nificantly enhanced for spectra containing “human” as endpoint. We will
address these questions in the current experiment.

1.1. Aim of study

As argued in the above, the human category seems to have an ex-
ceptional status, both on the neural and the behavioral level, which
raises the question to what extent typical findings associated with the
UV, such as the rightward shift in the location of the category boundary
towards the human end of the spectrum (i.e., 60–70% physical human-
likeness) and the observation of increased categorization difficulty for
stimuli located at the category boundary are specific to evaluations of a
stimulus’ humanness rather than a general effect of categorical pro-
cessing. In the current study, we first investigate whether the assump-
tions of the categorical perception hypothesis hold for both human and
nonhuman agent spectra, i.e. if human and nonhuman agent spectra
exhibit a category boundary (H1-1) and if cognitive conflict is highest
in proximity of that boundary (H1-2). Second, we examine whether
categorizations of humanlike stimuli differ from categorizations of non-
humanlike stimuli due to the special social status of the ``human” ca-
tegory. Specifically, we explore whether the nature of a spectrum's
endpoint (i.e., category B) affects the location of its category boundary
(i.e., right shift for spectra with a human endpoint; H2-1), as well as the

strength of cognitive conflict that is induced by categorically ambig-
uous stimuli at the category boundary (i.e., higher cognitive conflict for
spectra with a human endpoint; H2-2).

2. Experiments

To examine these questions, we first acquired photos of human and
nonhuman agents to be later on used as endpoints for a morphing pro-
cedure. Since the category of nonhuman social agents is quite hetero-
geneous in terms of features other than humanness, we further differ-
entiated the nonhuman agents into agents that are alive (i.e., animals) and
agents that are not alive (i.e., stuffed animals) to be able to separate effects
of ``humanness” from those of ``aliveness” (see Gray et al., 2007; for the
importance of animacy). In order to validate how the human and non-
human agents (robot, stuffed animal, animal, human) were perceived, we
conducted a pilot study in which participants were asked to rate the agents
in terms of ``humanness”, ``aliveness”, and ``similarity-to-self”. For the
main experiment, an image morphing procedure was employed to create
three spectra with the same starting point (i.e., robot) and three different
target agents as end points (nonhuman-nonalive: stuffed animal; non-
human-alive: animal; human-alive: human): robot-stuffed animal, robot-
animal and robot-human. To avoid confounds due to perceptual features
specific to single spectra, we created nine spectra for each of the three
target agents (see Stimuli for details). In the main experiment, a mouse-
tracking paradigm was used that required participants to categorize agent
images along a spectrum from category A to category B as either belonging
to category A (e.g., nonhuman) or category B (e.g., human) by making
mouse movements towards a text box representing the respective category
on a computer screen (see Task for details) while mouse movement cur-
vatures and movement onsets were measured.

We hypothesized that all spectra would exhibit category boundaries
(H1-1) and that categorization would be most difficult at the spectrum-
specific category boundaries (see Hackel et al., 2014), which would be
reflected in mouse curvatures being maximal when categorizing stimuli
that are located around the category boundary (H1-2; see Yamada et al.,
2013; for reaction time data). We expected locations of spectrum-spe-
cific category boundaries to be modulated by the group status of its
endpoint (ingroup versus outgroup), such that the category boundary
would be shifted towards that end of the spectrum that participants
identify with more (H2-1; see Hackel et al., 2014; for rating data). We
also hypothesized categorization difficulty to be influenced by the
nature of the categorization task, such that categorizations requiring
assignments of ``own group status” to a stimulus (e.g., human) would
cause more uncertainty than categorizations requiring the assessment
of ``other group” categories (e.g., animal) thus leading to more pro-
nounced mouse curvatures (H2-2; in line with Sigala et al., 2011).

2.1. Pilot experiment

The pilot experiment served the purpose of validating the stimuli
used in the mouse tracking study. Specifically, the aim was to validate
that stimuli depicting human agents were indeed unique in being more
“human”, “alive”, and “similar-to-self” than the nonhuman stimuli. For
that purpose, we presented all agent images (nine per category: robot,
stuffed animal, animal and human) in an online survey and asked
participants to rate them in terms of their “humanness”, “aliveness” and
“similarity-to-self” on a 7-point Likert scale. The experiment was pro-
grammed and hosted on Qualtrics (www.qualtrics.com).

2.1.1. Methods & materials
2.1.1.1. Participants. 77 participants were recruited via Amazon
Mechanical Turk (www.mturk.com). One participant was excluded
because of an unreasonably large amount of time needed to complete
the survey, resulting in a final sample size of 76 participants (42
females, mean age: 32.6, range: 21–76). All participants reported
normal or corrected-to-normal vision and gave informed consent
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prior to participating. The study took about 15 min to complete, and
participants received $0.20 for their participation.

2.1.1.2. Stimuli. In total, 36 photographs were presented during the
experiment, nine for each of the four agent categories (i.e., robot,
human, animal, stuffed animal); see Fig. 2. Photographs were acquired
using the following procedure: first, robot names were obtained from
Mathur and Reichling (2016), and the photos were subsequently
gathered using a Google image search. Only full-frontal photos
depicting robots with human-like faces (i.e., having eyes and nose)
were included in the study. Second, after selection of the robot photos,
they were matched on apparent gender, head orientation, and facial
features with a photo from the MUCT (Milborrow University of Cape
Town) human face image database (Milborrow et al., 2010), with a
photo from the Stanford dog database (Khosla et al., 2011), and with a
photo from a Google image search with the term “stuffed animal”. All
photos were cropped to a 1:1 aspect ratio and rescaled to 450 × 450
pixels. After rescaling, all backgrounds were removed.

2.1.1.3. Design, procedure, and task. The task followed a one-factorial
design with the within-participants factor Agent (four levels: human,
robot, animal, stuffed animal). After starting the experiment online,
participants were to read and agree to the consent form and fill out a
brief demographic survey. Subsequently, participants were shown the
instructions and began the main part of the pilot study. Participants’
task was to rate the different agents on humanness (``This agent is
human.”), aliveness (``This agent is alive.”), and similarity-to-self
(``This agent is similar to me.”). Each trial, the image of one agent
and a 7-point Likert scale (Strongly disagree, Disagree, Somewhat
disagree, Neither agree nor disagree, Somewhat agree, Agree,
Strongly agree) was shown. Only one dimension was tested per trial.
Trials were blocked with respect to the different rating dimensions,
resulting in 36 trials for each block and 108 trials in total. Block order
as well as agent order within blocks was randomized.

2.1.2. Results & discussion
Humanness, aliveness, and similarity-to-self were each analyzed

with a one-way ANOVA with the factor Agent (stuffed, robot, animal,
human) and followed up with post-hoc paired t-tests. Aliveness, hu-
manness, and similarity-to-self differed between Agents (all F(3,
225) > 100, all p < .001, all η²G > 0.4; see Fig. 3). Human stimuli were
perceived as being more alive than the animal (t(75) = 5.62, p < .001),
robot (t(75) = 15.81, p < .001) and stuffed animal (t(75) = 16.24,
p < .001) stimuli. The human agents were also perceived as being more
human and more similar-to-self than the animal, robotic, or stuffed
animal agents (all t(75) > 14, all p < .001).

Results suggest that the images chosen as start and end points for
the to-be constructed morph spectra show the desired differentiation of
aliveness, humanness, and similarity-to-self ratings between “human”
and “nonhuman” agents, and can therefore be used to create the morph
spectra for the main experiment. The associated R analysis script and
data files can be freely accessed online through the Open Science
Framework at https://osf.io/w76eq/.

2.2. Mouse tracking experiment

The goal of the mouse tracking experiment was to examine Hypotheses
1 and 2. In particular, the experiment investigated whether the different
spectra, irrespective of the target agent, exhibited signs of a categorical
boundary (H1-1), with maximal cognitive conflict processing around said
boundary (H1-2) and whether the location of the categorical boundary (H2-
1) and the magnitude of the cognitive conflict (H2-2) around the boundary
were altered for the spectra with the human target agent.

Fig. 2. Source images. These photo-
graphs were used as start- and end-
points for the morphing spectra. Each
of the human, animal, and stuffed
animal agents was morphed into the
robot agent on top of the respective
column. Spectra created with the
transparent images were excluded for
the final analysis of the main experi-
ment. For details, see Stimuli.

Fig. 3. Aliveness, humanness, and similarity-to-self ratings of source images.
The human images were perceived as being more alive, more human, and more
similar to self than the other images (see Results for more details). Ratings were
obtained based on a Likert scale ranging from 1 (strongly disagree) to 7
(strongly agree). Error bars depict SEM. stu: stuffed animal, rob: robot, ani:
animal, hmn: human; ***p < .001.
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2.2.1. Methods & materials
2.2.1.1. Participants. 165 undergraduate students participated in this
experiment, and were randomly assigned to one of the three different
experimental conditions: robot-human spectrum, robot-animal
spectrum or robot-stuffed animal spectrum. Two participants were
excluded because their categorization behavior could not be fitted
with a sigmoid function, resulting in a final sample size of 163
participants (robot-human: 40 females, mean age: 21.2, range: 18–29;
47 right handed; robot-animal: 40 females, mean age: 19.7, range:
18–39; 51 right handed; robot-stuffed animal: 35 females, mean age:
19.8, range: 18–35; 45 right handed). All participants reported normal
or corrected to normal vision, had not been diagnosed with a
psychological or neurological disorder, and were not taking any
medications affecting the central nervous system at the time of data
collection. The Ethics Committee at George Mason University approved
the experiment, and participants provided informed consent prior to
participation.

2.2.1.2. Apparatus. Stimuli were presented at a distance of about 57 cm
on an ASUS VB198T-P 19-inch monitor set to a resolution of
1280 × 1024 pixels and a refresh rate of 65 Hz using the Mouse
Tracker software (Freeman and Ambady, 2010). Mouse clicks and
trajectories from an USB-connected optical mouse were recorded.

2.2.1.3. Stimuli. Pictures along nine different morphing spectra for each
target morph condition (human, animal, stuffed animal) were created using
the morphing software FantaMorph 5.4.8 (Abrosoft). More than one
spectrum for each target agent condition was chosen in order to increase
external validity and to minimize artifacts originating from specific source
photographs. Along each spectrum, the produced morph images were set
apart by 5% morphing steps, resulting in 21 stimuli for each spectrum (see
Fig. 4; for examples). Since each target condition consisted of nine spectra,
189 stimuli were created for each target agent condition, resulting in 567
stimuli for the whole study with three target conditions. Each spectrum was
based on one photograph of a unique face of the respective target category
(human, animal, stuffed animal) and one portrait of a unique robot (see
Fig. 2 and Pilot Experiment for details about image selection). To ensure
comparable fidelity among morph images, high priority was given to
smoothly morph eyes, noses, eyebrows, and head shape (requiring at least
eight reference points for each feature). All images had a resolution of
450 × 450 pixels. All image backgrounds were removed after morphing.

2.2.1.4. Task. Participants were asked to categorize the morph images
as belonging either to a given agent category (e.g., human) or not (e.g.,
non-human). Specifically, participants in the human, animal, and
stuffed animal conditions were asked to categorize the images as
“human” or “non-human”, “animal” or “non-animal”, or “stuffed
animal” or “non-stuffed-animal”, respectively. Morphed images were
presented one at a time in the bottom center of the computer screen and
the order of their presentation was randomized throughout the
experiment. At the beginning of each trial, participants had to click a
start button located in the bottom center of the screen to make the

image appear. Afterwards, participants were asked to move the mouse
cursor from the bottom center of the screen (where the image was
placed) to one of two response boxes positioned in the left and right top
corners of the screen (depicting the two different categories) to indicate
whether the image belonged to a given agent category or not (e.g.,
“human” versus. “non-human”). During this decision-making process,
mouse movement onset times and curvatures were measured; see Fig. 5.
Clicking one of the two response boxes concluded the trial. Between
trials, a blank screen was presented for 1000 ms (i.e., inter trial interval,
ITI). Response boxes in the top corners of the screen were always shown
right from the beginning of the trial; agent images only appeared after
the start button was pressed.

2.2.1.5. Cognitive conflict measurement. Analyzing mouse movements
supposedly captures cognitive conflict and co-activation of categories
more precisely than reaction times, and can be obtained using the
Mouse Tracking software developed by Freeman and Ambady (2010).
The software allows for obtaining time-standardized mouse trajectories
of individual trials and computing each trajectory's maximum deviation
(MD) from a straight line towards the answer box (for an illustration,
see Fig. 5), which is an established measure of cognitive conflict
processing in mouse-tracking studies (Freeman and Ambady, 2010). A

Fig. 4. Example spectra for each target agent. A robot image (top left) was morphed into a target image (bottom right) in steps of 5%, resulting in a set of 21 stimuli
per spectrum. Target images belonged to one of three Target Agent categories: human (a), animal (b), or stuffed animal (c).

Fig. 5. Example trial. After pressing the start button, an agent image appeared
on the screen (center, bottom) and participants were to categorize the image as
either belonging to the target category (here, human) or not belonging to the
target category by moving the mouse cursor to one of the two answer boxes (top
left and right, respectively). The dotted black line shows an example mouse
trajectory. The dotted gray line represents an ideal trajectory with no mea-
surable cognitive conflict. The solid gray line represents maximum deviation
(MD), a measure of cognitive conflict for the black trajectory. Note that for MD
calculations, the trajectory is first standardized with respect to time (for details,
see Freeman and Ambady, 2010). Between trials, a blank screen was presented
for 1000 ms.
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similar Mouse-Tracking-based indicator of cognitive conflict is area
under the curve (AUC; Freeman and Johnson, 2016). For the current
paper, since both measures capture the same process, we decided for
the MD and against the AUC measure, as it is slightly easier to explain
conceptually. To account for the fact that cognitive conflict could also
be reflected in participants’ hesitation to move the mouse immediately
after stimulus presentation (i.e., participants pause to figure out what
they are looking at) time-to-first mouse movement after stimulus
presentation is also recorded.

2.2.1.6. Design & procedure. The experiment followed a two-factorial
design with the within-participants factor Morph Level (ranging from
0% to 100% category B-ness in steps of 5%; e.g., 0 to 100% human) and
the between-participants factor Target Agent (Human, Animal, Stuffed
Animal). All target agents were morphed into the same robot images,
resulting in three different morphing spectra (robot-human, robot-
animal, robot-stuffed animal) with 21 morphing levels for each
spectrum.

At the beginning of the experiment, participants were seated in front
of a computer and signed the informed consent form. Participants were
then given instructions for the main task and asked to always answer as
quickly as possible. This was done to maximize the chance that parti-
cipants started with the mouse movement immediately after the sti-
mulus was presented (time-to-first mouse movement was measured to
control for mouse movement onset time). After participants read the
instructions, they were asked to perform three practice trials to famil-
iarize themselves with the mouse-tracking procedure. The stimuli used
for the practice were created separately and not drawn from any of the
experimental morph spectra. Upon completion of the practice trials, the
main experiment began, during which participants categorized 189
agents (9 spectra per target agent group, with 21 morphing levels each).
Each image was presented once per participant with the order of the
images being randomized across the experiment. The main task took
about 15 min to complete. After having completed the questionnaire,
participants were informed about the purpose of the experiment and
received course credit before the session concluded.

2.2.2. Results & discussion
Trials with extreme categorization times deviating more than 2.5

standard deviations from the individual mean were excluded from
analysis, leading to an exclusion of 2.3% of all trials. Also, one spectrum
in each condition was excluded because one of the base stimuli was
perceived as categorically ambiguous. A spectrum was excluded when,
in the grand average, either the 0% morph was categorized as animal,
stuffed animal, or human, respectively, in more than 10% of trials, or
the 100% morph was categorized as either animal, stuffed animal, or
human, respectively, in less than 90% of trials (please see transparent
images in Fig. 2). Effect sizes are reported as generalized eta squared
(ηG

2), enabling comparison between-participants and within-partici-
pants designs (Bakeman, 2005). The associated R analysis script and
data files can be freely accessed online through the Open Science Fra-
mework at https://osf.io/w76eq/.

2.2.2.1. Hypothesis 1–1: all spectra exhibit spectrum-specific category
boundaries. We expected all spectra, irrespective of target agent, to
possess category boundaries. To investigate the existence of categorical
boundaries, a three-parameter logistic function (see Eq. (1)) was fitted
to each participant's individual data (predictor variable: Morph Level;
response variable: Proportion of category B categorizations). Parameter L
defines the upper asymptote, parameter k the growth rate, and
parameter x0 the predictor level at which the growth rate is the
highest. For example, for values of x between 1 and 100, an L of 1,
an x0 of 50, and a k of 0.05, the function returns y values from below
0.1 (for low x) that rise in a non-linear s-shape to values above 0.9 (for
high x). A one-sample t-test on growth parameters (i.e., parameter k in
Eq. (1)) was used separately for the three target agent conditions (i.e., t-

tests for human, animal, and stuffed animal target agents) to test
deviation from linearity (see Cheetham et al., 2011; for a comparable
procedure). Growth parameters above zero2 indicate a nonlinear
relationship (see Cheetham et al., 2011).

=
+

f x
e

( ) L
1 *k x x( 0) (1)

In general, the logistic function fitted the individual data very well.
R2 for individual fits ranged from 0.704 to 0.997. Mean R2 values were
comparably high for all Target Agent conditions (R2

animal = 0.958,
R2

human = 0.966, R2
stuffed animal = 0.933).

Participants exhibited step-like, in contrast to linear, functions when
categorizing stimuli along the robot to human (t(53) = 14.05,
p < .001, M = 0.21), robot to animal (t(54) = 16.88, p < .001,
M = 0.14), and robot to stuffed animal (t(53) = 15.66, p < .001,
M = 0.11) dimensions; see Fig. 6a. Thus, for all Target Agents (human,
animal, stuffed animal), the respective spectrum exhibited regions with
low categorical uncertainty and, around the category boundary, regions
with high categorical uncertainty. As a next step, we averaged across
participants within target agent conditions and extracted spectrum-
specific category boundaries by predicting the morph level at which
50% of the stimuli are categorized as category A and 50% as category B
(i.e., Point of Subjective Equality; PSE): 71% physical human-likeness
for the robot-human spectrum, 63% of physical animal-likeness for the
robot-animal spectrum, and 37% of physical stuffed animal-likeness for
the robot-stuffed animal spectrum (Fig. 6a).

2.2.2.2. Hypothesis 1–2: cognitive conflict is maximal at spectrum-specific
category boundaries. We expected cognitive conflict processing to peak
at the spectrum-specific category boundaries reported above. Cognitive
conflict was measured using maximal deviation (MD), a measure
derived from mouse trajectories (Fig. 5). To investigate whether
cognitive conflict processing peaked at the category boundary
between the robotic and the target agents, a two-step procedure was
employed. First, a mixed ANOVA with the within-factor Morph Level
(0% to 100% category B-ness), the between-factor Target Agent (human,
animal, stuffed animal) and MD as dependent variable was conducted
as an omnibus test. A significant interaction would indicate cognitive
conflict to be distributed differentially along the morph levels for the
different target agents, which is what we expect since the three
different target agents are associated with different category
boundaries (71%, 63%, and 37%, respectively; see H1-1). Second,
linear regression analyses were employed to investigate whether the
location of the individual category boundaries (in % category B-ness)
and the location with maximal cognitive conflict (in % morph level,
which equals % category B-ness) co-varied.

The omnibus test indicated that cognitive conflict was altered as a

2 As a more conservative analysis, we conducted one-sample t-tests testing the
sample growth rate against a growth rate of 0.05. We chose this value because
the example function with parameters L = 1, k = 0.05, and x0 = 50 already
shows a decent deviation from linearity. A value of 0.01 on the other hand still
shows a highly linear pattern. All t-tests remained significant with t > 8.5 and
p < 0.001. We also confirmed the results with a bootstrapping method that
allows capturing the uncertainty of the k estimates, which is occluded in the
previous approach. We drew 163 participants with replacement from the par-
ticipant pool and within each participant eight spectra with replacement from
the eight spectra available. For this bootstrapped sample, we fitted the sigmoid
function as in the original analytic approach and repeated the procedure 1000
times. The resulting 95% confidence intervals for the k parameter do neither
include the liberal criterion of 0 nor the more conservative criterion of 0.05
(CIanimal = [.16 .53], CIhuman = [.24 .84], CIstuffed animal = [.12 .35]). Note that
the estimated k values are higher when using the bootstrapping in comparison
to using the original method because the sampling with replacement frequently
leads to the exclusion of one or more spectra which leads to less “smearing” due
to averaging across spectra with different PSEs. We thank an anonymous re-
viewer for suggesting this method.
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function of Morph Level (F(20, 3200) = 4.18, p < .001, ηG² = 0.03), but
not Target Agent (F(2, 160) = 0.79, p = .455, ηG² = 0.01). The inter-
action between Morph Level and Target Agent was significant (F(40,
3200) = 10.90, p < .001, ηG² = 0.12), confirming that the variation of
MD along the morph levels differed between target agent types
(Fig. 6b). Post-hoc tests that were conducted to further investigate the
interaction are reported in the supplemental materials.

The linear regression analyses provided evidence that maximal
cognitive conflict processing and the location of the category boundary
also coincide on the individual subject level: the category boundaries
(i.e., morph level at which a given participant would categorize the
stimulus as belonging to the target category, e.g., “human”, in 50% of
trials) were extracted from individually fitted logistic functions. For
each morph spectrum (robot-human, robot-animal; robot-stuffed an-
imal), the individual categorical boundaries were then used to predict
the location of individual MD maxima (i.e. morph level at which the
participant's cognitive conflict was highest) to determine whether the
location of the category boundary and the location of the MD maxima
were likely to co-occur. Results show that individual category boundary
locations were able to predict the location of individual cognitive
conflict maxima for human target agents (F(1, 52) = 21.75, p < .001,
Radj

2 = 0.28)), animal target agents (F(1, 53) = 73.19, p < .001,
Radj

2 = 0.57), and stuffed animal target agents (F(1, 52) = 21.83,

p < .001, Radj
2 = 0.28); see Fig. 7.3 To validate that category boundary

location not only predicted cognitive conflict maxima location but that
both variables indeed co-occurred at the same location, we also report
whether the intercept of the linear regressions differed from 0 and
whether the slope differed from 1. Neither the intercept (human target
agent: t(52) = 0.53, p = .60; animal target agent: t(53) = 1.81,
p = .08; stuffed animal target agent: t(52) = 0.06, p = .95) nor the
slope (human target agent: t(52) = 0.77, p = .44; animal target agent: t
(53) = 1.81, p = .08; stuffed animal target agent: t(52) = 0.05,
p = .96) were significantly different from 0 and 1, respectively. Taken
together, the preceding analyses suggest that maximal cognitive con-
flict and the location of the category boundary tend to coincide, irre-
spective of whether the categorization included human or nonhuman
target agents, thereby supporting H1-2.

Fig. 6. Cognitive conflict at category boundary. (a) For all three Target Agents, the spectra exhibited a categorical boundary (see Results: Hypothesis 1 for details). (b)
Cognitive conflict varies with physical distance from the robot and, on a descriptive level, peaks around the category boundary. Error bars depict SEM. MD: Maximum
Deviation (see Methods; for details). ***p < .001, n.s. : p > .05.

3 To validate the findings with MD as measure for cognitive conflict, we
conducted the same analyses with AUC as measure for cognitive conflict.
Results were highly similar for human target agents (F(1, 52) = 24.90,
p < 0.001, Radj

2 = 0.31)), animal target agents (F(1, 53) = 53.11, p < 0.001,
Radj

2 = 0.49), and stuffed animal target agents (F(1, 52) = 31.73, p < 0.001,
Radj

2 = 0.37).
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2.2.2.3. Hypothesis 2–1: category boundary shift towards ingroup,
rendering the ingroup more exclusive. In line with previous studies, it
was hypothesized that the spectrum-specific category boundaries are
shifted towards the end of the spectrum that was most representative of
“own” group status (i.e., human). A one-factorial ANOVA with Target
Agent (human, animal, stuffed animal) as between-participants factor
and individual category boundaries as dependent variable was
employed as an omnibus test and followed up with independent t-
tests. The procedure for computing the location of individual category
boundaries is analogue to the procedures employed for H1-1.

Results of the omnibus showed a significant effect of Target Agent on
the location of the category boundary (F(2, 160) = 87.95, p < .001,
η²G = 0.52) with the category boundary for the human target agent
being located at 70.2%, for the animal target agent at 61.6%, and for
the stuffed animal target agent at 36.9% of category B-ness (i.e.,
human, animal or stuffed animal). Three independent post-hoc t-tests
confirmed significantly different category boundary locations between
all target agent categories (all t > 3.4, all p < .001) with “human” as
the most exclusive category. Please note that the slight differences be-
tween the category boundary locations reported here and in Fig. 6a
stem from the fact that in the current analysis, logistic functions were
fitted to individual rather than grand average data. Also note that these
results imply that there is not only a shift in the location of the category
boundary between spectra with human and nonhuman target agents
but also between spectra with nonhuman animal and nonhuman stuffed
animal target agents.

2.2.2.4. Hypothesis 2–2: stronger conflict for outgroup-ingroup than
outgroup-outgroup categorizations. We hypothesized that due to the
higher social relevance, as well as the deeper neural processing of
human stimuli, decisions requiring human-nonhuman categorizations
would be associated with a higher magnitude of cognitive conflict than
nonhuman-nonhuman categorizations. To test this hypothesis, we took
each participant's cognitive conflict for the morph levels left and right
of the average spectrum-specific category boundary (e.g., MD at 70%
and 75% humanness for the robot-human spectrum with the average
category boundary at 71% morph level), averaged across both values,
and used these average scores to compare the extent of cognitive
conflict processing between human target agents (i.e., “own”) and
nonhuman target agents (i.e., “other”: animal and stuffed animal) using
an ANOVA (DV: MD at categorical boundary; IV: Target Agent) as
omnibus test and independent one sided t-tests as follow-up analyses.

When not accounting for mouse movement onsets, cognitive conflict
measures at spectrum-specific category boundaries did not differ be-
tween target agents, that is: high categorical uncertainty was associated

with comparable cognitive conflict irrespective of whether the cate-
gorization involved human target agents (F(2, 157) = 0.55, p = .577,
η²G < 0.01 M(human) = 0.44, M(animal) = 0.39, M(stuffed an-
imal) = 0.40). However, when only looking at trials where participants
started the mouse movement immediately after stimulus presentation
(i.e., 300 ms after stimulus presentation or less), which is required for a
meaningful interpretation of mouse tracking data,4 cognitive conflict
measures around the category boundary were impacted by target agent
(F(2, 157) = 5.74, p = .004, η²G = 0.07). Follow-up one-sided in-
dependent t-tests revealed higher cognitive conflict processing for ca-
tegorizations involving “human” versus “nonhuman” stimuli (human
vs. animal: t(104) = 3.37, p < .001, M(human) = 0.57, M(an-
imal) = 0.38; human vs. stuffed animal: t(104) = 1.98, p = .025;
Fig. 8a). A follow-up two-sided t-test revealed no differences in cogni-
tive conflict processing for categorizations involving two types of
“nonhuman” stimuli (M(stuffed animal) = 0.45; animal vs. stuffed an-
imal: t(106) = 1.33, p = .187; Fig. 8a).

The 300 ms threshold was determined post-hoc through visual in-
spection of the relationship between mouse movement onset and cog-
nitive conflict measures across all trials (Fig. 8b). Below threshold,
cognitive conflict was stable at around 0.4 and steadily declined
thereafter (i.e., MD declined from around 0.4 at threshold to around 0
for a 1000 ms onset delay), indicating that in trials above threshold,
participants might have partially resolved the cognitive conflict before
starting to move the mouse. Mouse movement onset was above
threshold in 45.9% of trials. Five participants had to be excluded from
threshold-related analyses because their mouse movement onset was
above threshold for all trials in proximity to the category boundary. For
exploratory purposes, we also provide a graph comparing cognitive
conflict processing above and below threshold for all morph levels in
the Supplemental Materials (Figure S1).

Fig. 7. Relationship between individual cognitive conflict maxima and individual category boundaries. For all three dimensions, irrespective of Target Agent, the
location of the category boundary can be used to predict the location of the cognitive conflict maximum as measured by maximum deviation of the mouse curvatures
used during categorization. ***p < .001.

4 The quality of cognitive conflict measures in mouse-tracking studies in-
creases if participants have to start moving the mouse immediately after sti-
mulus onset (Scherbaum and Kieslich, 2017). If participants start moving the
mouse only after they resolved the conflict, MD as well as other measures re-
lying on the mouse trajectory are not able to capture conflict processing. Here,
‘the first mouse movement’ was defined by the time at which participants
moved the cursor more than 20 pixels either horizontally or vertically. Note
that we expect cognitive conflict to be also present in trials with a movement
onset later than 300 ms. However, in these trials, the conflict is supposedly not
captured by the mouse movement data because it had already been resolved
before movement onset. Therefore, we exclude trials with late mouse move-
ment onset only for this specific analysis.
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3. General discussion

It was explored to what extent previously reported observations
associated with categorical perception of social entities, such as an in-
creased categorization difficulty and shifts in the location of the cate-
gory boundary, are general phenomena observed for categorically
ambiguous stimuli or specific phenomena related to stimuli that are
ambiguous in terms of their humanness (i.e., “human” versus “non-
human”; e.g., Cheetham et al., 2011; Looser and Wheatley, 2010; Weis
and Wiese, 2017). Using mouse tracking, it was shown that cognitive
conflict processing indicative of categorical ambiguity peaks around the
spectrum-specific category boundaries for all agent spectra independent
of whether they contained a human endpoint or not. However, both the
extent of cognitive conflict processing and the location of the spectrum-
specific category boundaries were affected by the specific categoriza-
tion that needed to be made, that is: stimuli located at a nonhuman-
human category boundary induced stronger cognitive conflict proces-
sing than stimuli located at a nonhuman-nonhuman category boundary
with no difference in the extent of cognitive conflict processing between
nonalive-alive (i.e., robot-animal) and nonalive-nonalive (i.e., robot-
stuffed animal) categorizations within the nonhuman spectra.

The observation that cognitive conflict is increased for all stimuli
located at spectrum-specific category boundaries and not only for sti-
muli of ambiguous human-likeness suggests that increased processing
costs for ambiguous stimuli are not specific to nonhuman-human ca-
tegorizations but can be found independently of the spectrum's nature
and the location of its category boundary. The results are in line with
previous studies linking categorical perception to increasing cognitive
processing costs (Weis and Wiese, 2017; Yamada et al., 2013), and
reduced cognitive performance (Mandell et al., 2017; Wiese et al.,
2019), with costs being highest and performance being lowest for ca-
tegorically ambiguous stimuli. The universal observation of cognitive
conflict processing for all spectra is also in line with certain claims of
the inhibitory-devaluation hypothesis (Ferrey et al., 2015), stating that
phenomena related to categorically ambiguous stimuli (i.e., falling on
the mid point of the spectrum) are not directly related to human-like-
ness per se, but instead reflect a more general form of stimulus deva-
luation that occurs when inhibition is triggered to resolve conflict be-
tween competing stimulus-related representations. Please note that
although no affective measures were obtained in the current study, the
results indicate that conflict between competing categorical re-
presentations is observable for all examined spectra and not dependent
on considerations regarding a stimulus’ human-likeness. Since increase
in cognitive processing costs and decrease in cognitive fluency has been
linked to negative emotional reaction in previous studies, it is con-
ceivable that conflict processing related to categorical ambiguity may

cause negative affective reactions to uncanny stimuli; this hypothesis,
however, would have to be tested empirically in future experiments.

Nevertheless, although signs of categorical processing were ob-
served for all examined spectra, the current findings do indicate that
both the extent to which categorically ambiguous stimuli induce a
cognitive conflict (i.e., nonhuman-human categorical transitions induce
more pronounced mouse curvatures than nonhuman-nonhuman cate-
gorical transitions), and the location of the category boundary (i.e.,
category boundary is biased towards ``alive” stimuli and even more so
towards ``human” stimuli) are modulated by whether the categoriza-
tion required decisions regarding a stimulus’ human-likeness, which
indicates that certain aspects of categorical processing are enhanced
during the perception of humanness. The observation that nonhuman-
human categorizations exhibit pronounced cognitive conflict suggests
that conflict resolution might be easier for spectra that do not contain
the human category (e.g., robot-animal) than for spectra that contain
human and nonhuman categories (e.g. robot-human). There are several
possible explanations for this: First, as detailed in the introduction,
``human” may be a privileged category for human observers and in-
crease the motivation to perceive an ambiguous stimulus as ``human”
even though it possesses some physical features that suggest otherwise
(e.g., exaggerated eyes or disproportionate eyes-nose-mouth relations).
This is even more conceivable given that humans should have more
perceptual expertise in processing human faces than nonhuman ``faces”
given the steady exposure to human faces. It is possible that increased
cognitive conflict for stimuli of ambiguous physical humanness is the
consequence of an ongoing competition between top-down mechanisms
that lead to the expectation of a ``human” stimulus and bottom-up
mechanisms triggered by physical agent features implicating a ``non-
human” classification. This interpretation would be in line with pre-
vious studies showing that being in need for social connection lets in-
dividuals accept nonhuman stimuli as human despite the presence of
contradicting perceptual information (Hackel et al., 2014). Similarly, it
is possible that the presence of human features activate the ``human”
category, which is then repeatedly suppressed by knowledge that the
entity is in fact not human (Misselhorn, 2009). It cannot be excluded,
however, that increase in cognitive conflict processing for the robot-
human morphs compared to the robot-nonhuman morphs is simply due
to stronger reactions to morphed images containing “human” than
``nonhuman” information (see Kätsyri et al., 2015; for a criticism of
morphed images to study uncanny valley effects). Relatedly, it can also
not be excluded that increase in cognitive conflict processing is related
to changes in certain perceptual features (e.g., participants may have
high perceptual thresholds for accepting skin color as human-like but
not for nose shape, for instance) as opposed to categorical ambiguity
(e.g., high thresholds for the holistic perception of a stimulus as

Fig. 8. Cognitive conflict around category boundary. (a) If trials with delayed mouse movement onset are excluded, human target agents inflict higher cognitive
conflict around the category boundary than the other target agents. Error bars depict SEM. (b) Cognitive conflict processing declines with increasing mouse
movement onset times. The gray line represents the loess curve (used for smoothing), which is obtained by locally weighted polynomial regressions for each point
(e.g., Cleveland et al., 1992) and was computed with the standard parameters of R's (R Core Team, 2013) loess function. The loess curve was fitted using the whole
dataset whereas the plot is zoomed in (minimal and maximal MD and maximal Mouse Movement Onset Values not depicted) and thus represents the majority but not
the entirety of data. hmn: human, ani: animal; stu: stuffed animal; ***p < .001, *p < .05, n.s. : p > .05.
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``human” versus ``nonhuman”). In other words, it is possible that per-
ceptual ambiguity may triggered by one (or a subset of) facial feature(s)
rather than the face as a holistic stimulus (in line with Moore, 2012;
also see MacDorman and Chattopadhyay, 2016). Second, stimuli that
possess human-like physical features or show human-like motion pat-
terns (Castelli et al., 2000) trigger anthropomorphic perceptions in a
bottom-up manner within a few hundred milliseconds, and are thus
harder to suppress due to their reflexive nature than nonhuman stimuli
(Desimone and Duncan, 1995), which may contribute to the increased
cognitive conflict. Alternatively, it is plausible that due to human pre-
ferences for ``anthropomorphic” interpretations (Epley et al., 2007), the
activation of ``nonhuman” interpretations of observed stimuli might be
delayed (McMains and Kastner, 2011) and in turn may delay conflict
resolution (Chattopadhyay and MacDorman, 2016; MacDorman and
Chattopadhyay, 2016; Saygin et al., 2012). It cannot be excluded,
however, that increased cognitive conflict processing for robot-human
versus robot-nonhuman spectra is simply due to the fact that human
and robot faces are more similar to each other than human and animal
or human and stuffed animal faces. Third, it is possible that stimuli that
are ambiguous regarding their human-likeness are more arousing due
to negative affective reactions than stimuli that purport categorical
ambiguities unrelated to human-likeness and thus have a stronger im-
pact on categorical decision making during mouse tracking. Although
increased arousal due to negative affective reactions has been linked to
the UV (Kätsyri et al., 2015), as well as to decreased cognitive perfor-
mance (Eysenck and Calvo, 1992), this interpretation seems unlikely
given that Ferrey et al. (2015) have shown that negative affective re-
actions for uncanny stimuli seem to be independent of their human-
likeness.

In terms of the location of the category boundaries, the current re-
sults show that although maximal cognitive conflict occurred around
each spectrum's category boundary, the location of this boundary
varied as a function of target agent (i.e., human vs. animal vs. stuffed
animal) such that it was shifted towards the end of the spectrum that
contained stimuli that were alive, human, or similar to the participant.
Please note that this shift of the location of maximal cognitive conflict
processing could be caused by one (or multiple) separate facial feature
(s) (i.e., feature-based / quantitative explanation; compatible with the
perceptual mismatch hypothesis) as opposed to the face as a whole (i.e.,
category-based/qualitative explanation; compatible with the catego-
rical perception hypothesis). The observation that this rightward bias is
most pronounced for alive, human, or generally “similar to self” stimuli
is in line with behavioral data from previous studies using human-
nonhuman spectra (Cheetham et al., 2011; Looser and Wheatley, 2010;
Martini et al., 2015), as well as neurophysiological data from primate
studies (Sigala et al., 2011) showing preferential processing of ``in-
group” stimuli. According to Sigala et al. (2011), this shift may reflect
visual expertise for members of one's own species and be a signature of
greater brain resources assigned to the processing of privileged cate-
gories (i.e., can serve as sensitive indicators of encoding strength for
categories of interest). This interpretation would be in line with nu-
merous studies on the ``other race effect” that have shown greater
perceptual sensitivity for face stimuli belonging to ``own” versus
``other” racial groups (Hugenberg et al., 2010; for a review), as well as
studies on mind perception that have shown ingroup-outgroup manip-
ulations to affect categorical perception, such that category boundaries
are shifted more strongly towards the ``ingroup” end of the spectrum
(e.g., same university or fan of the same sports team; Hackel et al.,
2014). The current study adds to these findings by showing that shifts
in category boundaries are not specific to spectra of human-likeness,
but also occur for spectra of varying ``nonhuman-likeness”. However,
the current data cannot exclude that this shift is simply due to higher
perceptual expertise of human observers for human stimuli versus an-
imal and robot stimuli (in line with a perceptual expertise interpreta-
tion; see Sigala et al., 2011; Hugenberg et al., 2010). Future studies are
needed to elucidate the impact of perceptual and motivational variables

on the categorical perception of uncanny stimuli.
From a more applied point of view, our results suggest that robotic

or virtual agents should be designed in the least ambiguous way pos-
sible. Interacting with unambiguous agents evokes the least cognitive
conflict, thus drains the least cognitive resources, and consequently
should be more pleasurable and efficient than interacting with ambig-
uous agents. In line with this suggestion, semi-realistic animated film
characters were shown to be perceived as eerier and less likable than
characters impersonated by real actors (Kätsyri et al., 2017) and in-
teracting with ambiguous agents has been linked to decreased perfor-
mance (Wiese et al., 2019). The current results indicate that such un-
desirable effects, though less pronounced, should not only occur when
interacting specifically with ambiguous human-like but when inter-
acting with ambiguous agents in general. The current findings however
also indicate that ``human” is quite an exclusive category, with the
category boundary shifted far to the right side of a robot-human spec-
trum, making it challenging to design unambiguous humanlike agents.
Thus, whenever specifically humanlike properties are not absolutely
necessary, designing for nonhuman but unambiguous agents might lead
to more desirable interaction outcomes than for humanlike but am-
biguous agents.

4. Conclusion

The current experiment used mouse tracking to examine the effect
of stimuli's human-likeness on categorical perception and cognitive
conflict processing. Results indicate that cognitive conflict processing is
universally observed at category boundaries across morph spectra with-
and without involvement of human agents. However, the extent of
cognitive conflict processing and the location of category boundaries
are affected by the specific nature of the spectrum. Cognitive conflict
was higher for spectra containing versus not containing human agents,
and the location of the category boundary was shifted towards the end
of the spectrum that was more ``alive”, ``similar to self”, and ``human”.
While the current study empirically showed how human-likeness affects
categorical perception, the mechanisms underlying the described
modulations of cognitive conflict processing and category boundary
locations remain, for the most part, unexplored. Future studies need to
address this gap in the literature by exploring whether the effect of
human-likeness on categorical perception is mainly perceptual or mo-
tivational in nature.
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