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Objective: Human problem solvers possess the ability 
to outsource parts of their mental processing onto cogni-
tive “helpers” (cognitive offloading). However, suboptimal 
decisions regarding which helper to recruit for which task 
occur frequently. Here, we investigate if understanding 
and adjusting a specific subcomponent of mental models— 
beliefs about task- specific expertise—regarding these help-
ers could provide a comparatively easy way to improve off-
loading decisions.

Background: Mental models afford the storage of be-
liefs about a helper that can be retrieved when needed.

Methods: Arithmetic and social problems were solved 
by 192 participants. Participants could, in addition to solv-
ing a task on their own, offload cognitive processing onto 
a human, a robot, or one of two smartphone apps. These 
helpers were introduced with either task- specific (e.g., stat-
ing that an app would use machine learning to “recognize 
faces” and “read emotions”) or task- unspecific (e.g., stating 
that an app was built for solving “complex cognitive tasks”) 
descriptions of their expertise.

Results: Providing task- specific expertise information 
heavily altered offloading behavior for apps but much less so 
for humans or robots. This suggests (1) strong preexisting 
mental models of human and robot helpers and (2) a strong 
impact of mental model adjustment for novel helpers like 
unfamiliar smartphone apps.

Conclusion: Creating and refining mental models is an 
easy approach to adjust offloading preferences and thus im-
prove interactions with cognitive environments.

Application: To efficiently work in environments in 
which problem- solving includes consulting other people 
or cognitive tools (“helpers”), accurate mental models—
especially regarding task- relevant expertise—are a crucial 
prerequisite.

Keywords: cognitive offloading, mental models, 
distributed cognition, extended cognition, metacognition,  
strategy selection

INTRODUCTION

Primer: Cognitive Environments

Technological advances related to computer 
hardware (e.g., the steady increase in processing 
power; Schaller, 1997), software and algorithms 
(e.g., modeling uncertainty in probabilistic pro-
gramming; Ghahramani, 2015), and embodiment 
(e.g., the creation of intelligent virtual agents; 
Cassell et al., 2000; or improving the social com-
ponent of robot agents; Wiese et al., 2017) con-
tribute to a world with a plethora of opportunities 
to support our brain’s limited abilities (i.e., cog-
nitive offloading; Risko & Gilbert, 2016). These 
advances have the potential to “supersize our 
minds” (Clark, 2011). However, the continuously 
changing landscape of these opportunities also 
comes with a challenge: how do we decide which 
of the opportunities to take? When leaving for din-
ner with a friend, would we (1) navigate on our 
own or seek support by relying on (2) our friend’s 
navigational ability, (3) a smartphone app, or (4) a 
robot companion? Current evidence suggests that 
we frequently make biased and suboptimal choices 
when seeking to support our brain (Gilbert et al., 
2019; Risko & Dunn, 2015; Virgo et al., 2017; 
Weis & Wiese, 2019a). Consequently, we are in 
need of interventions that inform unbiased choices 
(compare Risko & Gilbert, 2016), which requires 
that we improve our understanding of the underly-
ing decision mechanisms. The current manuscript 
caters to these needs by exploring how mental 
models about our fellow humans, smartphone 
apps, and embodied robots (i.e., cognitive helpers) 
influence offloading choice and how these models 
can be updated so as to readjust suboptimal choice 
behavior.

Primer: Mental Models of Cognitive 
Environments

A problem solver’s mental model of a cog-
nitive helper reflects “his or her beliefs about 
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the [...] system, acquired either through obser-
vation, instruction or inference” (Norman, 
2014). Mental models enable problem solvers 
to retrieve these beliefs from their memory such 
that the beliefs can subsequently guide inter-
action behavior like cognitive offloading (also 
known as “information- based metacognition”; 
for a review, see Koriat & Levy- Sadot, 2000). 
It should be noted that mental models have 
been crucial for seeking cognitive support long 
before the advent of human–computer inter-
action—that is, when interacting with fellow 
humans. For example, when asked to remem-
ber topic- specific information in concert with 
another person, social problem solvers will 
remember less information when they believe 
that the other person is an expert in the respec-
tive topic (Wegner, 1987). The dynamic way 
humans use mental models to distribute infor-
mation across the minds of other group mem-
bers (transactive memory; Wegner, 1987) has 
long been at the core of human society.

What has changed in recent decades, how-
ever, is the variety of nonhuman entities that 
can be accessed for such cognitive support. 
For example, humans can nowadays access 
internet- based rather than fellow human- based 
information (Clowes, 2013; Wegner & Ward, 
2013). In general, humans are increasingly 
interconnected with computers that can enhance 
their cognitive abilities way beyond information 
seeking (Clark, 2004, 2011) and consequently 
are in need of mechanisms to decide when 
to rely on computer- based processing. The 
straightforward assumption that we adopt in the 
present paper is that this decision process can 
be informed by the same mental model- based 
mechanism that holds when interacting with 
humans rather than computers. That beliefs are 
relevant for a human’s decision to seek cogni-
tive support is highly likely. For example, if a 
user’s mental model of a calculator’s CLEAR 
button includes beliefs that suggest low reli-
ability, the user will press the button multiple 
times rather than only once (Norman, 2014). 
Similarly, beliefs about an input device’s reli-
ability have been shown to alter use frequency 
independently of actual reliability (Weis & 
Wiese, 2019a).

Current Study: Do Mental Models Shape 
How Cognitive Environments Are Used?

In the present study, we therefore argue that, 
and investigate if, understanding and adjusting 
mental models of cognitive environments could 
provide a comparatively easy way to guide and 
improve cognitive support- seeking (i.e., “cog-
nitive offloading”) behavior. (Please note that 
other factors like performance [Risko et al., 
2014; Walsh & Anderson, 2009; Weis & Wiese, 
2019b], effort [Ballard et al., 1997; Kool et al., 
2010], or trust [de Visser et al., 2012, 2016] 
likely also influence cognitive interactions 
withhumans, computers, and robots, but are 
addressed in the current paper only insofar as 
they might be mediated by an associated belief 
system [i.e., amental model].) What is known 
is that if helpful information regarding the cog-
nitive environment is missing, it is likely that 
preexisting mental models are accessed to guide 
offloading choice. For example, when asked to 
solve arithmetic and social problems, humans 
preferred to seek advice from computers and 
robots when solving arithmetic and advice 
from humans when solving social problems 
(Hertz & Wiese, 2019). Although not explic-
itly investigated in that study, we assume these 
task- specific preferences to have emerged due 
to stereotypical beliefs about the expertise of 
specific human and robotic entities that are part 
of an individual’s mental model of the generic 
entity (e.g., “all humans are social beings,” “all 
robots can rely on precise computers to calcu-
late,” etc.). In a similar vein, the way humans 
cognitively interact with other agents has been 
shown to depend on whether they believe that 
the agent possessed a mind (Wiese et al., 2012; 
Wykowska et al., 2014), which likely has exten-
sive consequences for how humans structure 
their mental model of that agent.

To put the importance of mental models for 
cognitive support seeking to a test, we used a 
novel computer- based paradigm in which partic-
ipants can either solve arithmetic or social prob-
lems on their own or offload it onto a human, a 
robot, or one of two smartphone applications. 
Note that novel smartphone applications are, 
just like robots, created by humans and, also just 
like robots, likely perceived superior to humans 
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in analytical tasks (compare to Hertz & Wiese, 
2019). However, they are not embodied, less 
present in the news, and usually more special-
ized in a specific domain (e.g., entertainment or 
finance) than their embodied counterparts. We 
therefore assume that our participants have lit-
tle or no preexisting mental models regarding 
novel smartphone apps.

Before engaging in the tasks, participants 
were to read short texts that were supposed 
to alter the participants’ mental models of the 
available cognitive helpers. The texts were—
inspired by our interpretation of the data pro-
vided by Hertz and Wiese (2019)—supposed 
to specifically alter beliefs about task- specific 
expertise. In other words, we assume exper-
tise beliefs to be a subcomponent of a mental 
model (of a cognitive helper) that has particu-
larly high relevance for cognitive offloading 
choice. Therefore, we designed texts that could 
either provide task- unspecific (e.g., the human 
is called “Michael” and studies English) or 
provide task- specific (e.g., the human is called 
“Michael” and is a social worker who is used to 
read emotions in people’s faces on an everyday 
basis) information about the helper's cognitive 
expertise.

Current Study: Hypotheses
1. H1- A. Based on the human advice- seeking behav-

ior reported by Hertz and Wiese (2019) and in the 
absence of information about a cognitive helper’s 
task- specific cognitive expertise, we assume that 
our participants’ offloading preferences are based 
on preexisting generic mental models of the cog-
nitive helpers available in a particular situation. 
Thus, when familiar cognitive helper types like a 
human or an embodied robot are available, we as-
sume our participants to make use of these gener-
ic mental models. Expertise beliefs stored in the 
generic model are then accessed and participants 
consequently prefer offloading arithmetic tasks to 
the robot and social tasks to the human even when 
no information about the cognitive helpers’ exper-
tise is provided.

2. H1- B. If that mechanism was true, providing spe-
cific expertise information that is consistent with 
preexisting beliefs (i.e., that suggest arithmetic 
expertise for the robot and social expertise for 
the human) should hardly change these offloading 
preferences.

3. H2- A. Analogously, if preexisting generic mental 
models do not differ, no differences in offloading 
preference should be exhibited. To test this hy-

pothesis, we introduced two novel smartphone 
apps in a task- unspecific manner, observed off-
loading patterns for both arithmetic and social 
task, and expected no offloading preferences for 
any of the apps in either of the tasks.

4. H2- B. However, when presenting information 
that suggests differential task- specific expertise 
of both apps, clear offloading preferences should 
emerge again. In other words, we hypothesize that 
offloading preferences similar to the ones exist-
ing for humans and robots can be established for 
novel cognitive environments solely by adjusting 
the environment’s mental model. Such a finding 
would suggest that human problem solvers use the 
same principles for deciding whether to offload 
cognition onto embodied agents like humans or 
robots, or onto nonembodied entities like smart-
phone apps.

Hypotheses have been preregistered. The 
preregistration can be accessed using the 
OSF repository associated with this manu-
script ( osf. io/ s93tv). (Note that factor names 
and hypotheses are phrased differently in the 
present manuscript to improve readability. 
The factor “External Helpers” is now called 
“Environment,” the factor “Metacognitive 
Priors” is now called “Mental Model,” H1 has 
been split into H1- A and H1- B in the present 
manuscript; H2 has been split into H2- A and 
H2- B.)

METHODS AND MATERIALS
Participants

In total, 323 participants were recruited via 
Amazon Mechanical Turk ( www. mturk. com). 
Six participants were excluded because they 
took less than 10 min or more than 45 min 
for a study that was designed to take 20 min. 
Additionally, 121 participants were excluded 
because they failed the manipulation check (for 
details on the manipulation check, see the last 
paragraph of the “Procedure” section) at the end 
of the study. We acknowledge that the exclusion 
rate is substantial but retained the manipulation 
check as exclusion criterion because it (1) was 
determined a priori and (2) is crucial that our 
participants did attend to and remembered the 
information given to them as this information 
constitutes our main manipulation (i.e., the men-
tal model factor; see Figure 1), and we assume 
that some online participants do read texts only 



502 May 2022 - Human FactorsMonth XXXX - Human Factors4

Figure 1. Instructions for the mental model factor, as shown in (a) the “task- unspecific 
agent and task- specific app expertise beliefs” and (b) the “task- specific agent and 
task- unspecific app expertise beliefs” mental model conditions. Instructions are either 
suggesting task- unspecific cognitive skill or suggesting expertise specific to either 
arithmetic or social tasks; see “Design” section for details.
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casually. Each participant who spent on average 
less than 1 s for each of the perceived compe-
tence ratings was also excluded (e.g., answered 
the question “How proficient do you think 
Michael is in solving the Dot task?” on a 21- 
point sliding scale in less than 1 s). This led to an 
additional exclusion of four participants, result-
ing in a final sample size of 192 participants 
(121 females, mean age: 40.1 [age was compa-
rable between groups: mean age was 39.1 years 
for the “task- unspecific agent and task- specific 
app expertise beliefs” mental model group (for 
details on the factor, see “Design” section) and 
41.3 years for the “task- specific agent and task- 
unspecific app expertise beliefs” mental model 
group]; age range: 21–75). The rigorous and 
extensive exclusion of participants was neces-
sary to avoid biased results that underestimate 
the actual effects due to inattentiveness. All 
participants gave informed consent prior to par-
ticipating. The study took on average about 20 
min to complete and participants received $0.50 
for their participation. This research complied 
with the tenets of the Declaration of Helsinki 
and was approved by the Institutional Review 
Board at George Mason University. Informed 
consent was obtained from each participant 
prior to participation.

Apparatus
Participants took the survey online on their 

own devices. The experiment was presented 
using the psychological testing software Inquisit 
(version 5; Millisecond Software, www. milli-
second. com). Stimulus presentation scaled with 
the size of the participant’s screen.

Stimuli
In total, 72 stimuli were used, 36 for the 

“eye task” and 36 for the “dot task” (see 
“Tasks” section). For the eye task, stimuli 
were extracted from the Reading the Mind in 
the Eyes test (Baron- Cohen et al., 2001). For 
the dot task, nine stimuli were custom- made 
using a common image editing software. All 
nine stimuli consisted of either 19 or 20 dots 
and the following numeric difference between 
black and gray dots: –4, –3, –2, –1, 0, 1, 2, 3, 
or 4. The remaining 27 stimuli for the dot task 

were created by mirroring the existing stimuli 
on the horizontal axis and then further mirror-
ing both mirrored and original stimuli on the 
vertical axis. In addition, one unique practice 
stimulus was used for both eye and dot task 
that was not used in the main experiment. All 
stimuli can be accessed using the linked OSF 
repository.

Tasks

Similar to the paradigm used by Hertz and 
Wiese (2019), participants engaged in two 
tasks: an arithmetic (“dot task”) and a social 
(“eye task”) one. In the social task, participants 
saw pictures of human eyes and were asked to 
“select which word best describes what the per-
son in the picture is thinking or feeling” (Reading 
the Mind in the Eyes test; Baron- Cohen et al., 
2001). In the arithmetic task, participants saw 
black and gray dots and were asked to count and 
report the difference between the count of black 
and gray dots (for details on the dot stimuli, 
see “Stimuli” section). Participants were asked 
to solve the tasks as accurately as possible. In 
both tasks, participants had six answer options. 
Participants could either choose to answer the 
question on their own (four options) or they 
could offload the cognitive task to one of two 
apps or agents (two options). Participants were 
instructed that all apps and agents that they can 
choose from had already been completing the 
eye and the dot task in our lab and that by click-
ing an app or an agent they would thereby chose 
the answer that the app or agent had given when 
solving the task in our lab.

For example, participants might see a stimu-
lus with nine black and ten gray dots and could 
select to solve the task on their own by click-
ing one of the four numeric answer options 
(e.g., +1, 0, + 2, and −1; see Figure 2, top row). 
Participants could also choose to offload the 
task to one of two agents instead of clicking one 
of the numeric answer options. For example, in 
the top row of Figure 2, participants were able 
to offload the task to the robot Meka (center top) 
or the human Michael (center bottom). In the 
figure, the participant chose to offload the task 
to Meka and was provided with the answer that 
Meka selected (“Meka chose for you: −1”).
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Design
Three factors were employed in the current 

study. First, participants engaged in two differ-
ent tasks (factor: “task type”; levels: “arithme-
tic” and “social”). Second, participants were 
able to offload the task- related cognitive pro-
cessing onto different entities. In one of two 
experimental blocks, participants were able to 
offload cognitive processing (factor: “cogni-
tive environment”; levels: “agents” and “apps”) 
onto the human Michael and the robot Meka 
(i.e., level: “agents”). In the other experimental 

block, participants were able to offload cogni-
tive processing onto a smartphone app called 
Omnilearn and another smartphone app called 
Pattern Analytics (i.e., level: “apps”). Third and 
last, participants had to read through different 
texts introducing the human, the robot, and 
the smartphone apps (factor: “mental model”; 
levels: “task- unspecific agent and task- specific 
app expertise beliefs” and “task- specific agent 
and task- unspecific app expertise beliefs” 
[Figure 1]). We want to acknowledge a review-
er’s suggestion to name the factor “Information 

Figure 2. Trial sequence. At the beginning of a trial, participants had to click a square to center the mouse 
cursor. After clicking the square, the task- related stimulus and the answer options were shown. If a participant 
took longer than 5 s to pick a response, the task- related stimulus disappeared. A 5- s window was chosen to keep 
response times roughly comparable between tasks and to provide a challenging experience that encourages the 
use of cognitive helpers. After choosing a response, feedback was provided for 2 s. Between trials, a blank 
screen was shown for 2 s. Stimuli and answer options are drawn to scale; other text is not drawn to scale. Note 
that answer options are provided in squares of equal size and that the centers of the squares are presented at 
equal distance to the center of the screen for all six answer options.
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provided about the Helper” because it would 
more closely describe what we manipulated. In 
other words, a mental model cannot be directly 
manipulated but is only manipulated via the pro-
vided information. Although we appreciate the 
suggestion and think the proposed name would 
be more precise we decided to keep the current 
factor name because of its relative brevity and 
the theoretical framework associated with it.

To establish or update mental models of 
apps and agents, each participant was provided 
with text- based information describing their 
cognitive abilities (i.e., factor: mental model). 
Providing text- based information should be 
sufficient to establish or update mental mod-
els given that mental models represent “beliefs 
about [a] […] system [that are] acquired either 
through observation, instruction or inference” 
(Norman, 2014). Subsequently, participants are 
able to access the established mental models and 
recall the associated beliefs to guide their inter-
active behavior (also known as information- 
based metacognition; for a review, see Koriat 
& Levy- Sadot, 2000). Specifically, the provided 
information could either describe the helper as 
having task- unspecific or task- specific cogni-
tive abilities in either the arithmetic or the social 
domain.

Whether the provided information described 
the helpers as having task- specific or more gen-
eral (task- unspecific) cognitive abilities dif-
fered between blocks, and participants always 
engaged in one block with helpers that were 
described as having task- specific and one block 
with helpers that were described as having task- 
unspecific cognitive abilities. Which descrip-
tion type (task- specific or task- unspecific) was 
paired with which helpers (i.e., with agents or 
apps) was randomly assigned and which help-
ers were available differed between blocks. 
Participants thus belonged to one of two mental 
model groups:
1. “Task- unspecific agent and task- specific app exper-

tise beliefs”: In the “agents” cognitive environment 
block, the human was introduced as an undergrad 
majoring in English and the robot was introduced as 
being built for learning and answering complex cog-
nitive tasks (task- unspecific cognitive abilities). In 
the “apps” cognitive environment block, Omnilearn 
was introduced as an app built for recognizing fa-
miliar faces and reading emotions, and Pattern 

Analytics was introduced as an app built for help-
ing children learn math in real- life surroundings by 
being able to count and provide feedback about the 
amount of marbles lying in front of the child (task- 
specific cognitive abilities). The exact wording can 
be inspected in Figure 1a.

2. “Task- specific agent and task- unspecific app ex-
pertise beliefs”: In the “agents” cognitive envi-
ronment block, the human was introduced as an 
undergrad majoring in social work and is profi-
cient in reading human emotions, and the robot 
was introduced as being built for helping children 
learn math in real- life surroundings by being able 
to count and provide feedback about the amount 
of marbles lying in front of the child (task- specific 
cognitive abilities). In the “apps” cognitive en-
vironment block, both Omnilearn and Pattern 
Analytics were introduced as apps built to learn 
and answer complex cognitive tasks. The exact 
wording can be inspected in Figure 1b.

Block order (i.e., whether the agents or apps 
cognitive environment was encountered first) 
was randomized.

PROCEDURE
After clicking a link provided on MTurk, 

participants were to read a consent form. If a 
participant gave consent, general instructions 
concerning the two task types were given. One 
task required the participant to answer arithme-
tic questions; the other one required to answer 
social questions (for details, see “Tasks” sec-
tion). Importantly, participants could either 
choose to answer the question on their own 
(four options) or they could offload the cog-
nitive task to one of two apps or agents (two 
options). Participants then completed one 
practice trial for each task with four answer 
options, that is, without the possibility to get 
cognitive support from a human, robot, or an 
app. Only then participants were introduced to 
the possibility to offload their cognitive pro-
cessing to their cognitive environment, that 
is, onto a human, a robot, or one of two apps. 
Participants then completed one trial for each 
task with only two answer options, a human and 
an app. A unique human and app that did not 
appear in the main experiment were used for 
that purpose. Right before the beginning of the 
main experiment, participants were explicitly 
instructed: “Remember: Whenever you like, 
you can click on some of the humans, robots, 
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or apps to choose the answer that they gave last 
fall! However, keep in mind that their answer 
is not necessarily correct and that your task is 
to score as many correct answers as possible.” 
Prototypical trials as well as timing details are 
provided in Figure 2. For details on the different 
apps and agents, see “Design” section.

Participants then started one out of two 
experimental blocks. Both blocks consisted of 
the following. First, participants read a brief 
description of the two agents or apps that they 
could offload their cognitive processing to in 
the respective block (mental model manip-
ulation; see Figure 1). Second, participants 
had to answer one question about each agent 
that ensured that they read and understood the 
instructions. For example, when asked “What is 
Michael trained in?,” out of four answer options 
(Answering Complex Cognitive Tasks, English 
Language, Reading Emotions, Counting 
Objects), participants would have to select 
“English Language” if they read the instruction 
for Michael provided in Figure 1a and “Social 
Work” if they read the instruction for Michael 
provided in Figure 1b. If they answered at least 
one of both questions incorrectly, participants 
had to read the descriptions once more until 
they could provide correct answers to both 
questions. Third, participants were to rate the 
two apps’ or agents’ as well as their own abili-
ties to perform the arithmetic and the social task 
on a 21- point sliding scale that closely resem-
bled a visual analog scale. Questions followed 
the following format: “How proficient do you 
think ‘Meka’/‘Michael’/‘Omnilearn’/‘Pattern 
Analytics’ is in solving the ‘Dot’/‘Social’ task?” 
The scale ranged from “Very Unproficient” on 
the left side to “Very Proficient” on the right 
side. Fourth, participants engaged in a total 
of 36 trials consisting of 18 arithmetic and 18 
social trials (compare Figure 2). Trial order was 
randomized within the block, and in the first 
block, problems were chosen randomly from 
the pool of 36 arithmetic and 36 social prob-
lems. At the end of the second block, each prob-
lem had been shown exactly once. At the end of 
the first block, participants were allowed to take 
a self- paced break.

After completing both experimental blocks, 
participants completed a brief demographic 

survey, rated all four agents and themselves 
once more in their abilities to complete the 
arithmetic and the social tasks, and completed a 
final manipulation check. For the manipulation 
check, participants were once more asked to 
select, out of four options, what each of the four 
agents and apps were trained in. This manipu-
lation check allowed us to test whether partic-
ipants retained the information provided in the 
agent and app descriptions (i.e., mental model 
manipulation; see Figure 1). Participants then 
were thanked for participating in the study and 
a unique code that participants were to enter on 
MTurk to receive payment was presented.

Measure: Offloading Preference
For the main analysis, offloading preference 

was used as a dependent variable. Offloading 
preference is defined as the difference between 
how frequently a participant offloaded cogni-
tive processing onto the human as compared to 
the robot in the cognitive environment “agents” 
condition and onto Omnilearn as compared to 
Pattern Analytics in the cognitive environment 
“apps” condition. Within each block, the off-
loading preference can therefore range between 
−18 and 18. A value of −18 means that partic-
ipants offloaded the task exclusively onto the 
robot (in the cognitive environment “agents”) 
or the Pattern Analytics app (in the cognitive 
environment “apps") condition.

Analyses
As an omnibus test, we employed a 2 × 2 × 2  

analysis of variance (ANOVA) with the within- 
participants factors “cognitive environment” and 
“task type” and the between- participants factor 
“mental model.” To test our specific hypotheses 
(see “Current Study: Hypotheses” section), t- tests 
were employed. For details about the t- tests, see 
“Hypotheses- Driven Analyses” section.

RESULTS
To provide an overview over our partici-

pants’ problem- solving behaviors, the complete 
data on how frequently participants chose to 
rely on their own cognitive processing and how 
frequently they chose to rely on the human, the 
robot, or on one of the smartphone apps, are 
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depicted in Figure 3. Next, hypotheses- driven 
and explorative statistical analyses are reported 
(the associated R analysis script and data files-
can be freely accessed online through the Open 
Science Framework at  osf. io/ s93tv).

Hypotheses-Driven Analyses
Next, the results of the omnibus ANOVA are 

reported to allow the reader to inspect participants’ 

response patterns and to deduce whether 
the hypothesis- driven t- tests are backed by  
significant interactions in the data set as a whole. 
Subsequently, hypotheses- driven analyses are 
reported.

1. Omnibus ANOVA. Confirming our expectations, 
the omnibus test indicated that offloading prefer-
ence was altered as a function of the three- way 
interaction between mental model, cognitive 

Figure 3. Response counts for (a) the “task- specific agent and task- unspecific app expertise beliefs” and (b) the 
“task- unspecific agent and task- specific app expertise beliefs” mental model conditions. Each box summarizes 
the data of the 18 trials per participant in the respective condition. The x axis specifies whether participants 
solved the task on their own or chose to offload to the available apps or agents. Response counts can thus range 
from 0 (response chosen in 0% of trials) to 18 (chosen in 100% of trials) for each answer option and sum 
up to 18 within each box/rectangle. Black diamonds represent means. Error bars represent 95% confidence 
intervals. Gray diamonds represent raw data points. Gray shapes represent violin plots as implemented by 
ggplot2 (Wickham, 2016). The numeric values depicted in this plot can be inspected in Figure S1.
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environment, and task type (F[1, 190] = 69.4, 
p < .0001, ηG² = .10; Figure 4). Recall that off-
loading preference is defined as the difference 
between how frequently the human agent was 
chosen in comparison to the robot agent (in the 
cognitive environment “agents” condition) or how 
frequently Omnilearn was chosen in comparison 
to Pattern Analytics (in the cognitive environment 
“apps” condition). In addition, task type and cog-
nitive environment interacted in their influence on 
offloading difference (F[1, 190] = 43.4, p < .0001, 
ηG² = .06), whereas the interaction effects of men-
tal model and cognitive environment (F[1, 190] 
= 1.0, p = .3077, ηG² <.01) and mental model and 
task type (F[1, 190] = 2.1, p = .1482, ηG² <.01) 
were not significant at a.05 alpha level. All three 
main effects—cognitive environment (F[1, 190] = 
30.0, p < .0001, ηG² = .02), mental model (F[1, 
190] = 16.0, p < .0001, ηG² =.01), and task type 
(F[1, 190] = 211.2, p < .0001, ηG² = .33)—were 
significant. The ANOVA results suggest that hu-
man problem solvers prefer specific environments 
(i.e., specific apps, humans, robots) for solving 
specific tasks (i.e., arithmetic or social tasks) and 
that updating a mental model with task- specific 

information has a different effect for different 
environments.

2. Hypotheses H1- A and H1- B. Specifically, in 
the agents cognitive environment, participants 
changed their offloading preferences based on the 
task type for both mental model conditions: Partic-
ipants showed a higher preference for the human 
agent for the social in comparison with the arith-
metic task type for both the “task- specific agent 
and task- unspecific app expertise beliefs” (t[88] 
= 13.9, p < .0001; MSocial – MArithmetic = 17.5—in 
line with H1- A) and the “task- unspecific agent 
and task- specific app expertise beliefs” (t[102] = 
9.00, p < .0001; MSocial – MArithmetic = 10.1—in line 
with H1- A) mental model conditions. The men-
tal model did not alter offloading preferences for 
the arithmetic task type (t[190] = 1.56, p = .1202;  
MTask- specific agent and task- unspecific app expertise beliefs = −10.2,  
MTask- unspecific agent and task- specific app expertise beliefs = 
−8.4—in line with H1- B) in the “agents” cog-
nitive environment condition. The mental mod-
el, however, did alter offloading preferences for 
the social task type (t[190] = 6.01, p < .0001;  
MTask- specific agent and task- unspecific app expertise beliefs = 7.4,  
MTask- unspecific agent and task- specific app expertise beliefs = 

Figure 4. Offloading preferences, as measured in absolute frequencies, for the (a) “agents” and (b) “apps” 
cognitive environment conditions. Note that the “task- unspecific agent and task- specific app expertise beliefs” 
mental model condition comprises the left half of (a) and the right half of (b); whereas, the “task- specific agent 
and task- unspecific app expertise beliefs” mental model condition comprises the right half of (a) and the left 
half of (b). An individual’s preference scores can range from −18 to +18 for each permutation of task type 
and cognitive environment. Black diamonds represent means. Error bars represent 95% confidence intervals. 
Gray diamonds represent raw individual data points. Gray shape represents the distribution of the raw data as 
implemented by ggplot2’s geom_violin function (Wickham, 2016). ***p < .0001; n.s. p > .1.
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1.7—contradicting H1- B). In sum, in the “agents” 
cognitive environment, our human problem solv-
ers showed task- specific offloading preferences for 
different agents (Figure 4a). In alignment with H1- 
A, these offloading preferences existed even when 
only task- unspecific metacognitive information 
was provided. In alignment with H1- B, providing 
information describing the human as highly capa-
ble of reading emotions and the robot as highly ca-
pable of object recognition and object counting was 
not able to alter our problem solvers’ offloading 
preferences in the arithmetic task. Unexpectedly 
and not aligned with H1- B, however, the ascription 
of social ability to the human was able to change 
offloading preferences. H1- B is therefore only par-
tially confirmed.

3. Hypotheses H2- A and H2- B. In the “apps” cogni-
tive environment, on the other hand, participants 
changed their offloading preferences based on 
the task type only in the “task- unspecific agent 
and task- specific app expertise beliefs” mental 
model condition: Participants showed a higher 
preference for Omnilearn for the social in com-
parison with the arithmetic task type for the 
“task- unspecific agent and task- specific app ex-
pertise beliefs” (t[102] = 7.74, p < .0001; MSocial 
– MArithmetic = 12.1—in line with H2- B) but not 
for the “task- specific agent and task- unspecific 
app expertise beliefs” (t[88] =.73, p =.47; MSocial – 
MArithmetic =.7—in line with H2- A) mental model 
condition. The mental model in the “apps” cog-
nitive environment altered offloading preferences 
for both the arithmetic (t[190] = 5.97, p <.0001; 
MTask- specific agent and task- unspecific app expertise beliefs 
= −.1, MTask- unspecific agent and task- specific app expertise 
beliefs = −7.0—in line with H2- B) and the social 
(t[190] = 4.60, p <.0001; MTask- specific agent and task- 
unspecific app expertise beliefs = .6, MTask- unspecific agent and 
task- specific app expertise beliefs = 5.1—in line with H2- 
B) tasks. In sum, results for the “apps” cognitive 
environment condition show that our participants 
had no prior task- related offloading preferences 
for the Omnilearn or the Pattern Analytics app, 
thus confirming H2- A. Results also show that 
updating a mental model with task- specific infor-
mation is sufficient to establish strong offloading 
preferences, thus confirming H2- B. Results for 
the “apps” cognitive environment condition are 
depicted in Figure 4b. Providing task- specific 
metacognitive information about a cognitive en-
vironment can thus outmatch the relevance of pre-
existing mental models. In particular, participants 
in the “task- unspecific agent and task- specific app 
expertise beliefs” mental model condition showed 
more extreme offloading preferences for apps than 
for agents in the social (t[102] = 3.64, p = .0004; 
MApps- Agents = 3.38) and similar offloading prefer-
ences in the arithmetic (t[102] = 1.50, p = .1366; 
MApps- Agents = 1.41) task type.

Exploratory Analyses

In addition to the hypothesis- driven anal-
yses, we explored whether the hypothesized 
effect of cognitive environment and task type on 
offloading preference is mediated by the task- 
specific perceived competence of the respec-
tively available humans, robots, or smartphone 
apps. Mediation would suggest perceived com-
petence to be a crucial property of a cognitive 
environment. It would furthermore suggest 
that the mental model manipulation induced 
consciously accessible competence beliefs 
that are a source of the offloading preference. 
Specifically, we ran two multilevel mediation 
models using R's Bmlm toolbox (Vuorre, 2017), 
one for each mental model level. For details 
on the Bayesian parameter estimation, consult 
Vuorre and Bolger (2018). As we expected sim-
ilar and substantial mediation for both mental 
model levels, running two models allowed for 
cross- validation of the parameters.

Model results showed that for “task- specific 
agent and task- unspecific app expertise beliefs,” 
none of the bootstrapped 95% confidence inter-
vals of path a, b, c, or c’ included 0, which sets 
the stage for mediation tests. Mediation tests 
revealed that both the indirect effect (M = .28, 
95% CI [.10.48]) as well as the percentage 
mediated (M = .37, 95% CI [.13.62]) were sig-
nificantly greater than 0. Analogously, for “task- 
unspecific agent and task- specific app expertise 
beliefs,” none of the bootstrapped 95% confi-
dence intervals of path a, b, c, or c’ included 
0. Both the indirect effect (M = .16, 95% CI 
[.05.28]) as well as the percentage mediated 
(M = .24, 95% CI [.07.42]) were significantly 
greater than 0. Results of both mediation models 
suggest partial mediation. Task- specific compe-
tence ratings, therefore, seem to be a relevant 
part of a human problem solver’s mental model 
of an agent or an app. All mediation model 
parameter estimates are depicted in Figure 5. 
More details regarding the statistical procedure 
as well as parameter estimates are provided 
in the Supplemental Material. Mean rating 
data are provided in Figure S1. (Note that, for 
exploratory purposes, we obtained perceived 
competence ratings before and after participants 
engaged in the task. However, also note that, as 
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indicated by the means, both ratings seem to be 
highly correlated.)

DISCUSSION
The current paper investigated the four 

hypotheses H1- A, H1- B, H2- A, and H2- B 
(points 1–4 below) regarding the influence of 
mental models—specifically, beliefs about 
task- specific expertise—on cognitive offload-
ing. Hypothesis testing was complemented by 
exploratory mediation analyses (point 5 below).
1. H1- A. We confirmed in the offloading domain 

what previous research has already shown in the 
advice- seeking domain (Hertz & Wiese, 2019). 
Human problem solvers seem to have pronounced 
preexisting beliefs regarding human and robotic 
agents that inform their decision whether to off-
load cognitive tasks to human or robotic agents 
(confirmation of H1- A).

2. H1- B. When adding to these preexisting beliefs by 
providing information about task- specific com-
petencies, we found that introducing a robot as 
proficient in arithmetic and a human as proficient 
in social tasks did not alter offloading preferences 
in the arithmetic task (partial confirmation of H1- 
B). We argue that offloading preferences did not 
change because our participants’ preexisting ge-
neric beliefs have already been in congruence with 
the description of task- specific arithmetic exper-
tise before the description was presented (compare 
Figure S1ab, first graph from the left, for associat-
ed perceived competence ratings). However, off-
loading preferences after providing task- specific 
information did change for the social task (partial 
rejection of H1- B). The description’s impact on 
offloading preferences was likely due to the fact 
that, contradicting our expectations, preexisting 
competence beliefs have not been in congruence 
with the task- specific social expertise suggested in 
the description (compare Figure S1ab, third graph 
from the left, for associated perceived competence 

ratings). Thus, our participants’ preexisting mental 
models contained beliefs ascribing high arithme-
tic proficiency to the robot but surprisingly only 
suboptimal social proficiency to the human used 
in the present study. It should be noted that these 
results might not generalize to all human stimuli. 
For example, we only used a male human stimulus 
image and males are known to score lower on so-
cial skill measures than females (Petrides & Furn-
ham, 2000), which makes it questionable whether 
initial social proficiency ratings would have been 
as low as in the present study if a female was used 
as the human agent instead. (We thank the anony-
mous reviewer who made us aware of this issue.)

3. H2-A. We unsurprisingly found no task- specific 
offloading preferences for novel smartphone apps 
when introducing both apps in a task- unspecific 
manner (confirmation of H2- A). We argue that is 
because our participants’ mental models regarding 
the smartphone apps did not contain differential 
task- relevant beliefs. The finding thus supports the 
relevance of mental models for cognitive offload-
ing and sets the stage for H2- B.

4. H2-B. We found that providing task- relevant in-
formation about the smartphone apps was suffi-
cient to induce substantial offloading preferences 
(confirmation of H2- B). These preferences were 
of comparable magnitude to the preferences 
for humans and robots. Thus, providing task- 
relevant information about novel cognitive tools 
like smartphone apps can be sufficient to induce 
offloading preferences that are as strong as prior 
beliefs humans have about embodied agents like 
humans and robots.

5. Exploratory analyses. Last, when conducting 
follow- up explorative analyses, we found that 
offloading preference was partially mediated by 
competence ratings, suggesting an at least par-
tially information- based (Koriat & Levy- Sadot, 
2000) decision process that further highlights the 
importance of mental models for cognitive off-
loading. In other words, providing information 
about a cognitive helper’s task- specific expertise 
can update our mental model of this helper. The 

Figure 5. Standardized Bayesian multilevel mediation model estimates for (a) the “task- specific agent and 
task- unspecific app expertise beliefs” and (b) the “task- unspecific agent and task- specific app expertise beliefs” 
mental model conditions. Both models suggest partial mediation (see text). *95% CI does not include 0.
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updated model will subsequently provide con-
sciously accessible competence beliefs that can 
inform offloading preferences.

The present results provide evidence for 
how substantially mental models regarding 
fellow humans but also evolutionary novel 
cognitive partners like robots or smartphone 
apps can influence cognitive offloading pref-
erences. We argue that refining mental models 
is an easy and crucial approach to adjust off-
loading preferences and thus to improve our 
cognitive interactions with our social or tech- 
infused environments. To realize the potential 
benefit of such refinement, it is crucial to note 
that establishing valid and accurate mental 
models does not necessarily occur automati-
cally. For example, it is known that the elderly 
frequently underrate their mnemonic abili-
ties, which leads to an overreliance on exter-
nal memory aids (Touron, 2015). Similarly, 
it has been shown that false beliefs about the 
reliability of a specific human–computer- 
interface can have prolonged maladaptive 
effects on offloading preferences (Weis & 
Wiese, 2019a).

The present results suggest a general mech-
anism for learning how to cognitively interact 
with our environment that holds for embod-
ied (e.g., human, robot) and nonembodied 
(e.g., smartphone apps) helpers with varying 
degrees of social features alike: establishing 
and refining mental models. This “establishing 
mental models mechanism” is well compatible 
with a view that emphasizes human technical 
reasoning skills when engaging in cognitive 
interactions (Osiurak & Reynaud, 2019). Such 
technical reasoning (here: inferring a cognitive 
helper’s task expertise from an introductory text 
and preexisting beliefs) is largely independent 
of social components of the interaction (social 
learning; for example, Laland, 2004) or whether 
the cognitive interaction “partner” is assumed 
to possess a mind (top- down social cognition 
can heavily impact cognitive interactions with 
the environment; Wiese et al., 2012). Thus, 
while social learning (e.g., copying others) and 
social cognition (e.g., gaze following) can pro-
vide feasible means for human problem solv-
ers to establish novel tool use behavior, asocial 

mechanisms based on technical reasoning seem 
to be equally feasible.

Several issues should be kept in mind when 
interpreting the present results. First, we want 
to emphasize that mental models can only 
partially explain how human problem solvers 
establish offloading preferences. For example, 
it has been shown that one’s beliefs about the 
own prospective memory ability and actual 
ability are distinct from each other and have 
separable effects on offloading preferences 
(Gilbert, 2015). Accordingly, the moderate 
relationship between perceived competence 
and offloading preferences found in this study 
does leave room for additional explanations. In 
principle, the moderate relationship could also 
be due to methodological issues like a poor 
validity of our perceived competence measure. 
We, however, deem this possibility unlikely 
given the strong correlation with the “Task 
Type × Cognitive Environment” manipulation. 
Second, it should be noted that the mediation 
analysis only captured one aspect of the men-
tal models: beliefs about the cognitive helpers’ 
competence/expertise. It might well be that the 
metacognitive information we provided led to 
beliefs that are not directly related to compe-
tence and still affected offloading preferences. 
For example, we might have unwillingly estab-
lished beliefs about how trustworthy or likable 
an entity is. In the case of trust, it has been 
shown that humans, robots, and nonembodied 
computers can receive similar pretask trust rat-
ings (de Visser et al., 2012). However, trust has 
been shown to be more stable for human than 
nonhuman cognitive helpers (de Visser et al., 
2012), which might have in turn affected off-
loading preference over the course of the pres-
ent study. Further complexity is added by the 
fact that individual differences regarding trust 
toward machines (e.g., Merritt & Ilgen, 2008) 
and toward own cognitive functioning (e.g., 
Touron, 2015) are likely to factor in as well. 
Note that task- specific trust toward own cogni-
tive functioning can possibly be inferred from 
the perceived competence ratings shown in the 
Figure S1 but that domain- general cognitive 
functioning has not been measured in the pres-
ent study and is known to influence offloading 
preference as well (Gilbert, 2015). Third, in the 
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present paradigm, participants were continu-
ously confronted with two helpers, a situation 
that might deviate from everyday problem- 
solving and obscure absolute offloading rates. 
Relatedly, the discrete depictions as well as the 
novelty of the human helper, the robot helper, 
and the smartphone applications, might have 
further influenced absolute offloading rates, 
which should be considered when interpreting 
absolute offloading rates. However, note that 
the present analyses were focused on relative 
offloading differences between helpers, a mea-
sure that should not substantially be influenced 
by helper availability or novelty. Fourth, agent 
and app description (as provided in Figure 1) 
lengths differed between mental model condi-
tions. Although description length was compa-
rable within cognitive environment conditions 
and our main dependent variable (relative 
offloading preference) is thus not impacted, 
comparisons of absolute offloading preference 
between mental model conditions as depicted 
in Figure 2 might be confounded. However, we 
are not aware of any theory that would suggest 
this potential confound to be substantial.

One other highly interesting potential pre-
dictor of offloading preference that was not 
captured in the present study is experience- 
based (i.e., gut- feeling- based) rather than only 
information- based (i.e., based on memory 
retrieval; compare Koriat & Levy- Sadot, 2000) 
processing. (The difference is nicely illustrated 
by Koriatand Levy- Sadot [2000] on p. 194: 
“A person who does not like tuna fish may 
feel some repulsion toward a salad offered in 
a buffet when she learns that it contains tuna 
fish. Her choice to avoid the salad may then 
be based on the explicit information gained 
[information- based action] or on the immediate 
repulsive feeling [experience- based action].”) 
Consequently, our participants’ decisions to 
offload to a specific agent or app could have 
been due a gut feeling response that was devel-
oped when reading the agent and app descrip-
tions rather than due to recalling the respective 
description (i.e., Figure 1). The unexplained 
variance in the present mediation results would 
provide enough room for such a possibility. In 
general, it is well- established that some charac-
teristics that inform strategy selection processes 

might not be consciously accessible (Cary & 
Reder, 2002). Such unconscious processes are 
also in line with the finding that belief manip-
ulations can influence offloading preferences 
without changing subjective ratings of the cog-
nitive environment’s usefulness (Weis & Wiese, 
2019a).

KEY POINTS

 ● Naive human problem solvers possess mental 
models that encompass beliefs about task- specific 
expertise of human and robot agents.

 ● These preexisting mental models are reflected by 
how willing human problem solvers are to make 
use of such agents to help them solve specific 
cognitive tasks.

 ● Accordingly, when confronted with two similar 
and novel cognitive tools like smartphone apps, 
humans are indifferent about which one to use.

 ● However, providing a paragraph describing 
each app’s task- specific capabilities is enough 
to update the mental model and create as much 
behavioral relevance as the strong preexisting 
mental models that are in place for human and 
robotic agents do.

 ● We argue that creating or refining mental models 
(specifically, beliefs about expertise) is an easy 
and crucial approach to adjust offloading prefer-
ences and thus improve human problem solvers’ 
interactions in cognitive environments.
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