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Abstract

Despite recent successes in control theoretical programs for
limb control, behavior-based cognitive approaches for con-
trol are somewhat lacking behind. Insights in psychology and
neuroscience suggest that the most important ingredients for a
successful developmental approach to control are anticipatory
mechanisms and hierarchical structures. Anticipatory mech-
anisms are beneficial in handling noisy sensors, bridging sen-
sory delays, and directing attention and action processingca-
pacities. Moreover, action selection may be immediate using
inverse modeling techniques. Hierarchies enable anticipatory
influences on multiple levels of abstraction in time and space.
This paper provides an overview over recent insights in an-
ticipatory, hierarchical, cognitive behavioral mechanisms, re-
views previous modeling approaches, and introduces a novel
model well-suited to study hierarchical anticipatory behav-
ioral control in simulated as well as real robotic control sce-
narios.

Introduction
The autonomous control of the own body is an essential
challenge for any cognitive system. Although established
behavioral control in animals and humans seems effortless
in every day life, many challenges arise. Due the complex,
dynamic, time lagged, noisy, and often nonlinear interac-
tions between body and environment, effective body con-
trol in real environments is hard. Movements of different
body parts influence each other, clothing change the interac-
tions, muscle forces are state-dependent, etc. Furthermore,
sensory information may be unavailable, as for example in
darkness, or may be available only after a significant time
delay. The mind has to learn these complex, often context-
dependent, interactions to be able to induce effective adap-
tive body control.

The notion that most actions are goal directed and that the
goal state is represented before the action is performed is
labeled the ideomotor principle, which can be traced back
to the 19th century (Herbart 1825; James 1890)). Although
behaviorists later questioned this view, it is now widely ac-
cepted that behavior is in most cases goal oriented. Hoff-
mann (1993) emphasized this insight in his theory of an-
ticipatory behavior control, which theorizes that actionsare
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usually preceded by an anticipatory image of the sensory ef-
fects. The image triggers that action(s) that is (are) expected
to yield the anticipated effects, considering the current envi-
ronmental circumstances. Different sensory modalities and
sensory aspects can influence action triggering, as, for ex-
ample, an external effect (such as a tone) or also a proprio-
ceptive effect (such as muscle tension or pressure feedback).
To control more complex behavior, actions may be divided
into simpler parts. For example, if a piano player wishes to
play a tone, the anticipation of the tone causes the antici-
pation of the feeling of the correct hand position and then
the finger pressing the key. Thus, to achieve an overall goal,
several successive goals may trigger successive actions.

To be able to generate such complex behavior effectively,
hierarchical processes are necessary that generate goals and
partition far-reaching goals into suitable sub-goals. How-
ever, even if neuroscience shows that brain functions are
structured hierarchically (e.g. Poggio & Bizzi 2004), only
few computational arguments exist, why such structures are
advantageous.

This paper reviews evidence for anticipatory guided hu-
man processing and derives design suggestions for cognitive
behavior systems. Similarly, we assess evidence for hierar-
chically structured mechanisms. The gained insights lead us
to the development of a simple learning system for study-
ing the potential benefits of hierarchical anticipatory control
structures. We introduce the base model and confirm suc-
cessful behavioral control of a simple arm. In sum, this pa-
per develops anticipatory hierarchically controlled systems
that learn effective control structures to guide complex adap-
tive behavioral patterns.

The remainder of this work is structured as follows. First,
we review anticipatory and hierarchical cognitive structures.
Next, existing cognitive control models are compared. Fi-
nally, we introduce our model revealing its current capa-
bilities, limitations, and potentials. A short discussioncon-
cludes the paper.

Anticipatory Hierarchical Structures

In this section, we gather evidence for and benefits of an-
ticipatory and hierarchical structures in learning, behavioral
control, and cognition in the broader sense.



Anticipatory Behavior Control
Anticipatory behavior refers to behavior in which currently
desired goals precede and trigger the action that usually re-
sults in the desired goals. Psychological experiments under-
line the concept of anticipatory behavior.

A simple experiment confirms the presence of effect rep-
resentations before action execution. Kunde (2001) paired
actions with compatible or incompatible effects, such as the
presentation of a bar on the left or on the right compati-
ble or incompatible to a left or right key press. Although
the effects were presented only after the key press, reaction
times were significantly faster, when the location of the tar-
get button and of the visual effect corresponded. Similar
effects were found for the modalities of intensity and dura-
tion (Kunde, Koch, & Hoffmann 2004). Elsner and Hommel
(2001) showed that reaction times also increase if an action
is accompanied by a stimulus that does not match with the
expected effect, even if this stimulus could be completely
ignored to choose the correct response key. In all cases, it is
concluded that anticipatory effect representations interfere
with an action code or also with an external stimulus. Thus,
goal aspects are represented before action execution in terms
of at least some of the sensory effects. Interestingly, it has
also been shown that humans acquire such action-effect as-
sociations much easier than situation-action relations (Stock
& Hoffmann 2002).

However, the advantages of such anticipatory behavior
remain somewhat obscured. What are the benefits of rep-
resenting effects before or actually for action execution?
Other disciplines provide interesting insights in this re-
spect. Artificial intelligence shows that anticipatory repre-
sentations enable higher flexibility in learning and decision-
making. In reinforcement learning (Sutton & Barto 1998),
the DYNA architecture (Sutton 1990) showed that model-
based reinforcement learning mechanisms increase flexibil-
ity when goals vary or when the environment is partially dy-
namic. More recent investigations in relational reinforce-
ment learning have shown similar advantages when the flex-
ible propagation of reinforcement learning is required (Ker-
sting, Van Otterlo, & De Raedt 2004).

In control theory, structures capable of predicting future
states yield more powerful controllers. For example, a for-
ward model that predicts the consequences of actions may
be used to correct errors in advance (Miallet al. 1993). The
concept of combining sensory and predictive information to
compensate for unavailable, delayed, or highly noisy sen-
sory feedback is made most explicit in the widely applied
Kalman filter (Haykin 2002; Kalman 1960). Neuroscientific
studies indicate that Kalman filtering-like structures exist in
the cerebellum (Barlow 2002). Additionally, it was shown
that inverse models (IMs), that directly determine the action
necessary to obtain a desired goal, result in efficient adaptive
controllers (Kawato, Furukawa, & Suzuki 1987).

Thus, cognitive psychology and neuroscience suggest that
anticipations are important for effective adaptive learning
systems. Artificial intelligence and control theory have
shown that anticipatory structures improve learning speed
and reliability, behavioral flexibility and control, and sen-
sory robustness, resulting in effective goal-directed systems.

Hierarchies for Learning and Control
Besides the anticipatory indicators, studies and models sug-
gest that cognitive information is processed hierarchically.
Powers (1973) already stressed the importance of hierar-
chies in behavioral control and consequent computational
models of cognitive systems. Just recently, Poggio and Bizzi
(2004) pointed out that hierarchical structures are very likely
the key not only to sensory processing but also to motor
control. Available hierarchical models in vision (Giese &
Poggio 2003; Riesenhuber & Poggio 1999) are suggested to
be extended to motor control. Hierarchical top-down influ-
ences showed to have advantageous structuring effects (Rao
& Ballard 1999).

Computational motor control models showed advantages
of hierarchical structures. Considering the hierarchy of the
musculoskeletal system, the spinal cord, and a controller in
the CNS at the top, Loeb, Brown and Cheng (1999) demon-
strated that the spinal cord is able to counter most pertur-
bations on its own. However, the spinal cord also receives
task-depending input from the CNS to adjust its behavior.
Thus, the spinal cord makes the control task easier for the
CNS because not every single muscle has to be addressed.
It is sufficient to set an overall strategy to deal with most
perturbations.

Hierarchical processing models were proposed by
Kawato, Furukawa and Suzuki (1987), who applied a hi-
erarchical controller to a robot arm. The lowest level con-
tains a simple PD-controller that can in principle handle any
task. The controller is not very efficient, because the de-
layed feedback results in a slow control process. A second
layer improves performance. As soon as a direct model of
the plant is learned, it updates the control signal using the
expected feedback, which is available much faster than the
actual, sensory feedback. However, it is still necessary to
adjust the signal iteratively. A third level consists of an
inverse model(IM) that calculates a control signal for any
given goal. When the IM is accurate, the controller selects
a feasible control signal instantly. In case of a failure, the
lower levels induce the (slower and less effective) control.
The more accurate the models in the higher levels, the more
they influence the control signals.

Despite the ubiquitous hints on the importance of hierar-
chical processing and the first model from Kawato and col-
leagues, it remains somewhat unclear why hierarchies are
advantageous. One advantage may be the rather general
decomposability of our environment due to time and space
constrains (Gibson 1979; Simon 1969). Computational ad-
vantages can be found in artificial intelligence studies.

Reconsidering reinforcement learning, it has become
clear that hierarchical processing mechanisms are manda-
tory for effective reward propagation and flexible learning
(Barto & Mahadevan 2003). Hierarchical structures are
formed that can trigger options, that is, abstract action rep-
resentations including goals. Most recent publications have
shown that such hierarchical representations may be learned
by using simple statistics of the environment searching for
significantly independent sub-structures (Butz, Swarup, &
Goldberg 2004; Simsek & Barto 2004).

Thus, hierarchical control enables the discovery and re-



presentation of more distant and abstract dependencies as
well as increases flexibility in behavioral learning and de-
cision making, as well as in sensory processing at different
levels of abstraction in time and space.

Merging Both
As we have seen, cognitive processing is guided by antici-
pations that improve sensory processing and behavioral con-
trol. Hierarchies yield more flexible representations for an-
ticipatory learning and behavior. The observations suggest
that the combination of anticipatory and hierarchical struc-
tures may be a promising approach to understand and model
human motor learning and control.

The review also suggests several requirements for a cog-
nitive controller. First, the controller must represent a goal
in terms of desired sensory inputs. Partial, underspecified,
and even contradicting goals may be represented in different
sensory modalities. Second, goal representations should not
only be modular but also hierarchical. Higher level goal rep-
resentations are usually more abstract in time and space and
trigger lower level, more concrete, sensory dependent goal
representations. Third, the representations should be learned
by interacting with the environment. Learning architecture
and learning biases, however, are provided in advance.

Biological Plausiblity
To model motor learning and control, not only functional
constraints have to be taken into account. Additionally, the
structure of the motor control system and the mechanisms
that modify the structure during learning should be biologi-
cally plausible.

Neural networks are considered realistic models of
knowledge representations in the brain. In the case of multi-
layer neural networks, this plausibility holds only for an al-
ready learned network but not for the training mechanisms.
For single layer networks, the Hebbian learning rule (Hebb
1949) provides a biologically plausible learning algorithm.
It states that connections between neurons are strengthened,
if both neurons are excited at the same time and weak-
ened otherwise. Thus, it forms a basis for associative learn-
ing. Unfortunately, Hebbian learning only works for single
layer neural networks that can only compute linear separable
functions that are too simple for motor control. However, to
overcome this problem actions and goals can be represented
in a clustered form that divides the learning space in small
subspaces. The division enables the storage of non-linear
goal-action mappings.

Before we introduce our model, which can satisfy these
constraints, we review other related systems.

Cognitive Movement Controllers
Numerous computational models for motor learning and
control have been proposed. Most of them address specific
stages of movement generation, for example trajectory for-
mation (Cruse, Steinkühler, & Burkamp 1998; Hirayama,
Kawoto, & Jordan 1993) or coordinate transformation (Sali-
nas & Abbott 1995). Others are tracking reference signals,
relying on IMs and feedback controllers (Kalveram 2004;

Kalveramet al. 2005; Kawato, Furukawa, & Suzuki 1987),
which might be combined in a single control structure
(Stroeve 1996; 1997). Some approaches gate a number of
single control structures to be able to quickly adapt to chang-
ing limb properties (Haruno, Wolpert, & Kawato 2001;
Wolpert & Kawato 1998) or to combine motor primitives
(Berthieret al. 1992).

While each model has interesting properties on its own,
none match all the suggested cognitive system requirements.
The described hierarchical model of Kawato, Furukawa and
Suzuki (1987) contains three different levels but does not ac-
cept goals in arbitrary modalities. Other controllers (Cruse,
Steinkühler, & Burkamp 1998) accept underspecified goals
but do not include hierarchical layers. Many models con-
tain neural networks that learn by cognitively implausible
mechanisms, such as back-propagation. Our model intends
to bridge the respective drawbacks effectively creating a hi-
erarchical, anticipatory cognitive model that is suitableto
process any goal representation flexibly and hierarchically.

A Hierarchically Anticipatory Model of Motor
Control

We devise a new computational model for motor learning
and control. The central part of the model is the controller
that can transform any goal, represented in any available
sensor modalities, into action signals that move the body to
or at least towards a position, in which the desired sensory
effects are (usually) perceived. This goal action mapping
has to be learned by the controller while interacting with the
environment.

Inverse Models and Sensory Representation
A structure that transforms goals into actions usually needs
to represent a complex non-linear function. To do this with
a single layer neural network, the learning space can be di-
vided into small parts using Radial Basis Functions (RBF).
A sensory signal then is not represented by a single neuron
with an activation that correlates with a variable of the body
configuration, but it is represented by an array of single neu-
rons that represent a specific range of the possible values
of a variable. For example, a joint angle is not encoded by
a neuron that has a growing firing rate with growing limb
extension but by many different neurons. Each of these neu-
rons is only activated, if the joint angle is in a specific range.
The range of values for which a neuron is activated is called
its receptive field. This kind of representation fits well to
electro-physiological data obtained from measuring the cor-
respondence of single cell activity in the motor cortex and
movement patterns (Georgopoulus 1995).

Actions are represented in the same fashion, when ob-
served by the controller. However, this representation is not
very likely to exist in the periphery (motoneurons, proprio-
ceptions, etc). Thus, two transformations have to be done.
To encode a perception like a joint angle into an array of
neurons, the activation of every neuron has to be determined.
The receptive field of a neuron is characterized by its center
and width. The center is the variable value that will max-
imally excite the neuron. The width is given by the range



of values that will cause any activation. In the model, the
activation of a neuron is calculated by applying a Gaussian
distribution function to the distance between the center of
the receptive field and the measured value (using half the
distance to the next center of an receptive field as standard
deviation).

To reverse this transformations, a winner-takes-all mech-
anism converts the activity of many neurons into a single
signal. Thereby, the activation of the output signal is set to
the center of the receptive field of the neuron with the high-
est activation.1

To learn the neural network, actions have to be associated
to their effects, according to the situation. This is done by
strengthening the connections between neurons that encode
a situation and the effect of an action and the neurons that
encode actions, if both are activated at the same time. After
learning, the network can choose an action that will produce
the desired sensory effect in a specific situation. Thus, an
inverse model can be learned in a biologically plausible way
by interacting with the environment.

Generalization

The neural network presented above raises several questions.
At a first glance, the controller seems incapable of gener-
alization, that is, performing actions or reaching goals that
had not been encountered, yet. This shortcoming is partially
solved by the representation of the information. If the recep-
tive fields of the neurons are wide, they are even activated,
if the sensory signal is not in the close vicinity of the center
of the receptive field. Hence, the network will contain infor-
mation about what to do also if the currently desired sensory
state has not been reached during learning. This spatial gen-
eralization capability does not interfere with knowledge over
experienced movements, because activations due to general-
ization are comparatively low.

Naturally, it takes some time until an action has a notice-
able effect in the environment. To account for this, the neu-
ral network relates actions to the sensory state that is per-
ceived a few moments later. However, this restricts the in-
verse model to store action-effect relations that are encoun-
tered in a short time interval.

Consider the movement of an arm that needs 300ms to
move from a relaxed to a fully extended position. If the neu-
ral network encodes only the effects that an action has after
100ms, it will not contain information about how to fully
extend the relaxed arm, because it cannot be done in 100ms.
This problem can be reduced by introducing a second kind
of generalization (temporal generalization) that not onlyre-
lates more distant points in sensory space to certain actions,
but also sensory effects that occur after a longer time in-
terval. Again, to reduce interference with actually observed
movements, the connections between sensory effects that are
produced later in time are exponentially weaker.

1To enable more fine grained output signals, the neighbors of
the winning neuron are also taken into account, weighing their in-
fluence according to their activation level. If there are several win-
ning neurons, one winner is chosen randomly.

These two types of generalization allow the network to
control an arm effectively and reliably.

Model Evaluation
To test the feasibility of our approach, we evaluate the per-
formance of a single IM on a simple 1-dof-arm model. The
arm is dampened and a restoring force pulls it to its initial
position. To move the arm, a motor signal is proportionally
transformed into a torque that is applied to the joint. Thus,
applying a constant torque signal moves the arm to a certain
equilibrium position after some oscillations.

The IM is capable of applying a torque to produce a spe-
cific desired effect that comprises the joint angle and its
velocity. Receptive fields of sensory states (desired or ac-
tual) are distant0.1rad (1rad = 5.7 deg) for joint angle
and on average1 rad

s
for velocities, with a higher resolution

for small velocities. For the encoding of the action (torque)
receptive fields are distant10 rad

s2 . A change of torque of
about 1 moves the arm to a new equilibrium position about
0.067rad distant from the current one.

The network is trained by applying a new random
torque between−150 rad

s2 and 150 rad

s2 for 50ms, 100ms,
150ms or 200ms. This causes the arm to move ran-
domly in the range of−1rad to 1rad. To test the con-
troller, the arm has to move from 5 different starting angles
(−0.66rad,−.33rad, 0.0rad, .33rad, .66rad) to 21 differ-
ent targets(−1.0rad,−0.9rad, . . . , 1rad). In all cases, the
desired velocity is set to 0. During a reaching movement,
the controller sets a new torque every 50ms. A movement
is considered finished, if the joint angle does not move more
than0.02rad within 250ms.

To test whether the IM benefits from generalization capa-
bilities, both spatial and temporal generalization were varied
in a 2x2-design with 20 independently trained IMs in each of
the four groups. Spatial generalization was manipulated by
altering the width of the receptive fields of the neurons. The
high spatial generalization condition had receptive fieldsthat
measured 3 times the distance to the next center of a recep-
tive field in diameter. The diameter was reduced by a third
in the low spatial generalization condition. Temporal gener-
alization was manipulated by allowing the controller to re-
late actions to effects that occurred up to 100ms (low) or
up to 150ms (high) after the action had been performed. In
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Figure 1: Spatial and temporal generalization yield advan-
tages for accuracy (A) and movement speed (B).
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Figure 2: A range of acceptable end positions (white
squares) can be reached faster (A) and with less error (B)
than an exactly specified goal angle (black squares). This
also holds, if movement time (C) and accurary (D) of move-
ments to goal ranges are compared to movement that try to
reach the nearest point of a given goal range.

both cases, effects that occurred later had an activation level
of about 1% of the initial activation level. Figure 1 shows
that both spatial and temporal generalization capabilities al-
low increased accuracy (A) and faster movements (B). Split-
plot ANOVAs revealed significant main effects between the
groups for movement time and accuracy (bothp < .01). The
interactions between the groups did not reach significance.

A feature of the RBF-like representation is, that not only
precise goal coordinates can be desired, but also ranges of
acceptable goal positions. It is not always necessary to reach
an exact end position. To test if it is advantageous to give
a wider goal, reaching to an exact position was compared
to reaching to position anywhere within a range of0.8rad.
Each group consists of 20 IMs that learned independently.
Figures 2 A and B show, that movements to exact positions
(black squares) are slower (A) and less exact (B) than move-
ments to wide goal ranges (white squares). Note, that the
error in the goal-range-condition is calculated as the dis-
tance to the nearest joint angle within the range. Split-plot
ANOVAs confirmed both results (p < .01). This also holds,
when the movement to a goal range is compared to a move-
ment to the exact point within the range that is closest to
the initial position. On average, movements to any point in
the goal range are faster (C) and yield less errors (D) than
movements to the nearest point in the goal range. ANCO-
VAS that controlled for the distance to the nearest possible
goal confirmed both conjectures (p < .01).

Towards an Hierarchical Controller

The data presented above shows that it is possible to train a
single layer neural network in a biologically plausible man-
ner to control a simple arm model. As outlined above, gen-
eralization mechanisms can be used to make the IM reach
targets that have not been reached before or would be out of
scope because the distance between the initial sensory state
and the desired sensory state is to large.

We claimed, that a controller should be able to process
many different modalities. A single IM that relates all
kinds of sensory inputs (from proprioceptions to distal ef-
fects) would require a huge neural network structure and
challenge its temporal generalization capabilities, because
it would have to relate complex muscle activation patterns
with events that happen not very often and that can be pro-
duced in many different ways. Additionally, the network
would have to learn any actions by rote learning.

Consider switching on a lamp. To change the sensory in-
put that encodes brightness by pushing the switch, a long
sequence of muscle activations has to be carried out. To
learn this sequence by random movements may take a very
long time. The problem would be easier to solve, if many

musculoskeltal system

interneurons

processing

motorsignals proprioception

IM

desired effects

IM

IM

IM IM IM

IM

descending signals

exteroception

Figure 3: The left side of the drawing shows how the desired
effects are transformed into motor signals using a hierarchy
of inverse models (IM). The motor signals cause changes in
the arm. The changes are fed back to the controller (right
side). Perceptions can be used directly or after processing.

different IMs were involved. An IM that relates bright-
ness to hand position might well learn that the light goes
on if the hand reaches the position where the switch is. A
second IM that stores which muscle activation patterns are
needed to reach a specific hand position could then be used



to move the hand there. Additionally, other tasks that need
the hand to reach a specific position can be easily learned
because they can share the knowledge of the handposition-
to-muscle-activation-IM. Thus, a complex goal like switch-
ing on the light can be transformed into a more concrete
desired effect like a hand position that can be more easily
transformed into actual muscle activations.

The scheme of such a structure is outlined in figure 3.
More complex or abstract goals like producing a tone with
a piano or switching on a lamp are converted by IMs into
subgoals of a different modality. The subgoals are then con-
sidered as desired effect by IMs on a lower layer of the hi-
erarchy and are thus transformed to sub-subgoals and so on.
It should be possible to not only give goals on the highest
level, but also to bypass layers and desired more concrete
goals like a specific hand position. The IMs lowest layer
then calculates signals that are sent to lower motor centers
or the spinal cord, where they are transformed into muscle
activations after some processing. The muscle activation
may cause the body to move and thus evoke new propri-
oceptions and exteroceptions that are available to the con-
troller directly (like muscle tension measured by the Golgi
tendon organs) or after computing some abstract representa-
tions such as the hand coordinates given visual information.

Thus, a hierarchy of IMs can be used to enhance learn-
ing and control. First, the learning space is divided into sub
spaces, so that it is not necessary to associate concrete ac-
tions to any sensory effects but it is also possible to connect
new sensory effects (like brightness) to already known sen-
sory effects (like hand position). Second, by storing the in-
formation in different IMs, each IM can be accessed directly
and thus any goal modality can easily used as input.

Model Capabilities, Potentials, and Challenges
The data showed, that the single IMs can learn to control a
single arm by mere associative learning. Thereby, the con-
troller uses efficient activation sequences to reach a target.

A major point of critique on the current model may be the
method used for learning the IM. Since the method is not
goal-directed, the mapping is nowhere guaranteed to con-
verge to the optimum (Jordan & Rumelhart 1992). How-
ever, we believe that it is not necessary to obtain an opti-
mally accurate mapping between action and effects in the
general sense. Action execution is usually noisy and eas-
ily perturbed so that sensory feedback control is expected
to be generally necessary to reach a precise goal. The IMs
presented can also be used for closed loop control (Herbort,
Butz, & Hoffmann 2005).

Another concern is that the chosen RBF encoding is not
very suitable for generalization. Using different layers of
RBFs with a combination of larger and smaller receptive
fields may solve this problem. However, the encoding also
has advantages. The representation facilitates dealing with
uncertainty (Knill & Pouget 2004) and allows very flexi-
ble goal representations. A goal does not need to be ex-
actly specified but a range of acceptable goal states or goal
features can be presented to the network. This capabil-
ity increases flexibility, which is advantageous for control
(Todorov & Jordan 2002). Additionally, the representation

allows the encoding of many-to-many relationships. A final
RBF-related concern may be the curse of dimensionality and
the consequently exploding number of RBF neurons. How-
ever, techniques exist that can reduce the number of neurons
by adapting RBF sizes to the demands of the action-effect
function (see (Butz 2005) for one potential mechanism). Ad-
ditionally, separating comparatively independent parts of the
sensory space in different networks can reduce the amount
of required neurons (Urban, Bruessler, & Gresser 1998).

A big challenge arises considering the need to learn and
execute motor programs. Currently the system state only
changes, if the desired effects or sensory inputs change.
Thus, very fast or complex movements are not possible.
Two ways exist to integrate motor programs. First, it has
been shown that neural circuits exist in the spinal cord of
animals that generate specific motor signals to coordinate
simple rhythmic behavior, like walking or swimming (Dietz
2003). Thus, the model of the spinal cord could be extended
to include such rhythmic pattern generators. Additional rep-
resentations would be necessary to code the behavior caused
by the pattern generators, such as representations of walk-
ing or moving forward, to be able to address the behavior
with anticipations. A second way to include motor programs
would be to delegate this task to higher structures that send
continuously changing, desired effects to the controller.The
combination of both features may be able to learn rhyth-
mic behavior combined with consecutive behavioral pattern
changes, as appropriate.

In this paper we only presented results for one single
controller. Experiments are in progress combining multi-
ple controllers as outlined above. Two approaches need to
be distinguished: parallel, modular combinations and hier-
archical, abstracting combinations. Shadmer and Brasher-
Krug (1997) showed that human subjects are able to store
many different controllers for different situations. For ex-
ample, one controller could be trained for moving light ob-
jects and another for heavy objects. The weighted com-
bination of both controllers then enables fast adaptation to
specific situations. This feature can be added by using an
array of controllers that are experts for a specific situation
and are weighted accordingly (Haruno, Wolpert, & Kawato
2001). Hierarchically connected IMs might prove advanta-
geous when different objects need to be moved. Although
different weighting of lower level IMs is necessary to cal-
culate descending commands from the desired joint angles,
the relationship between external coordinates and joint an-
gles stay constant. Thus, only parts need to be adapted to the
current situation. Additionally, longer time delays in higher
layers may be compensated for by lower level control struc-
tures. On the other hand, the different times integrated by
different models may be used to facilitate more complex,
longer term movements.

Besides the combination and extension of IMs, strongly
noisy signals will require more elaborate processes. Forward
models can be included in the processing of the sensory in-
puts to bridge temporary misperceptions, sensory failure,or
noisy sensory inputs akin to Kalman filtering.



Summary and Conclusion
This paper has reviewed indications and benefits of antic-
ipatory mechanisms and hierarchical structures in control
processes. Both mechanisms are involved in human motor
learning and control. While anticipatory mechanisms lead to
direct action selections in inverse models and effective filter-
ing mechanisms in forward models, the modular and hierar-
chical combination of such models promises to yield a more
effective environmental representation increasing behavioral
flexibility, adaptivity, and decision making.

The gathered potentials of combining both mechanisms
into artificial cognitive systems promise fruitful future re-
search. The proposed model provides a novel, integrative
approach for studying such combinations. The generality of
the proposed associative structures enables direct modular
and hierarchical combinations. Future research will investi-
gate the suitability and extendibility of our approach for the
simulation of efficient cognitive learning systems in simu-
lated and real robotic environments. Moreover, future re-
search will further study the benefits of hierarchical, antici-
patory behavior control for learning, behavior, and cognition
in general, using and extending the proposed model.

Acknowledgments
This work was sponsored by the German research founda-
tion (DFG) under grant DFG HO1301/4-3 as well as by the
European commission contract no. FP6-511931.

References
Barlow, J. S. 2002.The cerebllum and adaptive control.
New York, NY: Cambridge University Press.
Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning.Discrete Event Dy-
namic Systems13:341–379.
Berthier, N. E.; Singh, S. P.; Barto, A. G.; and Houk,
J. C. 1992. A cortico-cerebellar model that learns to gen-
erate distributed motor commands to control a kinematic
arm. Advances in Neural Information Processing Systems
4:611–618.
Butz, M. V.; Swarup, S.; and Goldberg, D. E. 2004. Ef-
fective online detection of task-independent landmarks. Il-
liGAL report 2004002, Illinois Genetic Algorithms Labo-
ratory, University of Illinois at Urbana-Champaign.
Butz, M. V. 2005. Kernel-based, ellipsoidal conditions in
the real-valued XCS classifier system.GECCO 2005: Ge-
netic and Evolutionary Computation Conference: Volume
2 1835–1842.
Cruse, H.; Steinkühler, U.; and Burkamp, C. 1998. MMC -
a recurrent neural network which can be used as manipula-
ble body model. In Pfeifer, R.; Blumberg, B.; Meyer, J.-A.;
and Wilson, S., eds.,From Animal to Animats 5, 381–389.
Cambridge, MA: MIT Press.
Dietz, V. 2003. Spinal cord pattern generators for locomo-
tion. Clinical Neurophysiology114:1379–1389.
Elsner, B., and Hommel, B. 2001. Effect anticipations
and action control.Journal of Experimental Psychology
27(1):229–240.

Georgopoulus, A. P. 1995. Current issues in directional
motor control.Trends Neuroscience18(11):506–510.
Gibson, J. J. 1979.The Ecological Approach to Visual
Perception. Mahwah, NJ: Lawrence Erlbaum Associates.
Giese, M. A., and Poggio, T. 2003. Neural mechanisms for
the recogniton of biological movements.Nature Reviews
Neuroscience4:179–192.
Haruno, M.; Wolpert, D. M.; and Kawato, M. 2001. Mo-
saic model for sensorimotor learning and control.Neural
Computation13(10):2201–2220.
Haykin, S. 2002. Adaptive filter theory. Upper Saddle
River, NJ: Prentice Hall, 4th edition edition.
Hebb, D. O. 1949.The Organization of Behavior. New
York: John Wiley.
Herbart, J. F. 1825.Psychologie als Wissenschaft neu
gegründet auf Erfahrung, Metaphysik und Mathematik.
Zweiter analytischer Teil. August Wilhelm Unzer.
Herbort, O.; Butz, M. V.; and Hoffmann, J. 2005. Towards
the advantages of hierarchical anticipatory behavioral con-
trol. In Opwis, K., and Penner, I.-K., eds.,Proceedings of
the KogWis05. The German Cognitive Science Conference,
77–82. Basel: Schwabe.
Hirayama, M.; Kawoto, M.; and Jordan, M. I. 1993.
The cascade neural network model and a speed-accuracy
trade-off of arm movement.Journal of Motor Behaviour
25(3):162–174.
Hoffmann, J. 1993.Vorhersage und Erkenntnis. Göttingen,
Germany: Hogrefe.
James, W. 1890.The principles of psychology, volume 1.
New York: Holt.
Jordan, M. I., and Rumelhart, D. E. 1992. Forward mod-
els: Supervised learning with a distal teacher.Cognitive
Science16:307–354.
Kalman, R. E. 1960. A new approach to linear filtering and
prediction problems.Transactions of the ASME-Journal of
Basic Engineering82(Series D):35–45.
Kalveram, K. T.; Schinauer, T.; Beirle, S.; Richter, S.; and
Jansen Osmann, P. 2005. Threading neural feedforward
into a mechanical spring - how biology exploit sphysics in
limb control. Biological Cybernetics.
Kalveram, K. T. 2004. The inverse problem in cognitve,
perceptual and proprioceptive control of sensorimotor be-
haviour: towards a biologically plausible model of the con-
trol of aiming movements.International Journal of Sport
and Exercise2:255–273.
Kawato, M.; Furukawa, K.; and Suzuki, R. 1987. A hier-
archical neural-network model for control and learning of
voluntary movement.Biological Cybernetics57:169–185.
Kersting, K.; Van Otterlo, M.; and De Raedt, L. 2004. Bell-
man goes relational.Proceedings of the Twenty-First Inter-
national Conference on Machine Learning (ICML-2004)
465–472.
Knill, D. C., and Pouget, A. 2004. The bayesian brain:
the role of uncertainty in neural coding and computation.
Trends in Neurosciences27(12):712–719.



Kunde, W.; Koch, I.; and Hoffmann, J. 2004. Antici-
pated action effects affect the selection, initiation, andex-
ecution of actions.The Quarterly Journal of Experimental
Psychology. Section A: Human Experimental Psychology
57:87–106.

Kunde, W. 2001. Response-effetc compatibility in manual
choice reaction tasks.Journal of Experimental Psychology:
Human Perception and Performance27(2):387–394.

Loeb, G. E.; Brown, I.; and Cheng, E. 1999. A hierarchical
foundation for models of sensorimotor control.Experimen-
tal Brain Research126:1–18.

Miall, R. C.; Weir, D. J.; Wolpert, D. M.; and Stein, J. F.
1993. Is the cerebellum a smith predictor?Journal of
Motor Behavior25(3):203–216.

Poggio, T., and Bizzi, E. 2004. Generalization in vision
and motor control.Nature431:768–774.

Powers, W. T. 1973.Behavior: The Control of Perception.
New York: Aldine de Gruyter.

Rao, R. P. N., and Ballard, D. H. 1999. Predictive cod-
ing in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects.Nature Neuroscience
2(1):79–87.

Riesenhuber, M., and Poggio, T. 1999. Hierarchical mod-
els of object recognition in cortex.Nature Neuroscience
2(11):1019–1025.

Salinas, E., and Abbott, L. F. 1995. Transfer of coded
information from sensory to motor networks.Journal of
Neuroscience15(10):6461–6474.

Shadmehr, R., and Brashers-Krug, T. 1997. Functional
stages in the formation of human long term motor memory.
Journal of Neuroscience17(1):409–419.

Simon, H. A. 1969.Sciences of the Artificial. Cambridge,
MA: MIT Press.

Simsek, O., and Barto, A. G. 2004. Using relative novelty
to identify useful temporal abstractions in reinforcement
learning. Proceedings of the Twenty-First International
Conference on Machine Learning (ICML-2004)751–758.

Stock, A., and Hoffmann, J. 2002. Intentional fixation of
behavioral learning or how R-E learning blocks S-R learn-
ing. European Journal of Cognitive Psychology14(1):127–
153.

Stroeve, S. 1996. Linear combined feedback and feed-
forward control of a musculoskeletal system.Biological
Cybernetics75:73–83.

Stroeve, S. 1997. A learning feedback and feedfor-
ward neuromuscular control model for two degrees of free-
dom human arm movements.Human Movement Science
16:621–651.

Sutton, R. S., and Barto, A. G. 1998.Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Sutton, R. S. 1990. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. Proceedings of the Seventh International
Conference on Machine Learning216–224.

Todorov, E., and Jordan, M. I. 2002. Optimal feedback
control as a theory of motor coordination.Nature Neuro-
science5(11):1226–1235.
Urban, J.-P.; Bruessler, J. L.; and Gresser, J. 1998. Neural
networks for visual servoing in robotics. In Jain, L. C., and
Fukuda, T., eds.,Soft Computing for Intelligent Robotic
Systems. Springer. 81–111.
Wolpert, D. M., and Kawato, M. 1998. Multiple paired
forward and inverse models for motor control.Neural Net-
works11(7-8):1317–1329.


