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Anticipations Control Behavior: Animal Behavior in 

an Anticipatory Learning Classifier System

Martin V. Butz1, Joachim Hoffmann2

1Department of Cognitive Psychology, University of Würzburg and Illinois Genetic Algorithms 
Laboratory (IlliGAL), University of Illinois at Urbana-Champaign
2Department of Cognitive Psychology, University of Würzburg

The concept of anticipations controlling behavior is introduced. Background is provided about the
importance of anticipations from a psychological perspective. Based on the psychological background

wrapped in a framework of anticipatory behavioral control, the anticipatory learning classifier system

ACS2 is explained. ACS2 learns and generalizes on-line a predictive environmental model (a model
that allows the prediction of future environmental states). The model is a subjective model, that is, no

global state information is available to the agent. It is shown that ACS2 can simulate anticipatory

learning processes and anticipatory controlled behavior by means of the model. The simulations of
various rat experiments, previously conducted by Colwill and Rescorla, show that the incorporation of

anticipations is indeed crucial for simulating the behavior observed in rats. Despite the simplicity of

the tasks, we show that the observed behavior reaches beyond the capabilities of model-free rein-

forcement learning as well as model-based reinforcement learning without on-line generalization.
Possible future impacts of anticipations in adaptive learning systems are outlined.

Keywords anticipations · anticipatory behavioral control · anticipatory learning systems · reinforce-
ment learning · predictive environmental model · ACS2

1 Introduction

The insight that anticipations influence behavior has
been appreciated more and more over the last decades.
Researchers in cognitive psychology, cognitive sci-
ences, as well as neurosciences have been discovering
anticipatory influences in their diverse research direc-
tions. For example, anticipations directly influence the
execution of behavior (Kunde, 2001) and attentional
processes (Pashler, Johnston, & Ruthruff, 2001), and
perceptions trigger the anticipation of behavior result-
ing in behavioral preparedness (Schubotz & von Cra-
mon, 2001).

In artificial intelligence, on the other hand, the
notion and usage of anticipations for adaptive behavior
is still in its infancy. Reinforcement learning (RL) dis-
tinguishes now between model-free and model-based
techniques (Kaelbling, Littman, & Moore, 1996; Sutton
& Barto 1998). Model-free RL simulates pure stimulus–
response learning and behavior. Model-based RL, in
contrast, builds a predictive model and uses the
model to adapt behavior. This approach basically
allows planning as well as reacting. The dynamical
architecture Dyna (Sutton, 1991a) is the most promi-
nent example of this approach. One current major
drawback of RL is that usually no on-line generaliza-
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tion takes place. That is, the RL agent usually does
not generalize over the provided perceptions (or sen-
sations, or features) while interacting with the envi-
ronment. Moreover, the actual benefit or necessity of
anticipatory behavior has not been investigated so
far. 

This work provides evidence for anticipatory
behavioral influences in animals and humans, intro-
duces a psychologically motivated behavioral learn-
ing theory of anticipatory behavioral control, and
analyzes the theoretical constraints in the anticipa-
tory learning classifier system ACS2 (Stolzmann,
1997; Butz, 2002). It is investigated how well ACS2
implements the psychological theory and how the
approach allows the realization of anticipatory con-
trolled behavior. It is shown that additional anticipa-
tory learning and behavioral mechanisms can be
added easily. Taking the animat approach (Wilson,
1991) to competent adaptive behavior systems, we
simulate the behavior of ACS2 in several simple rat
experiments. Despite the experiments’ simplicity,
we reveal that the observed rat behavior cannot be
simulated with model-free RL since effect associa-
tions beyond plain reinforcement values are neces-
sary. Moreover, we reveal that if at all, off-line
generalizing model-based RL techniques cannot
simulate the behavior, either, since modifications in
the environment occur during the experiment. We
suppose that an on-line learned and on-line general-
ized predictive model representation in combination
with anticipatory processes enables strong behavio-
ral competence.

In the next section, we reveal the importance of
anticipations and knowledge about anticipation influ-
enced behavior from a cognitive psychology perspec-
tive. Moreover, we provide a framework for anticipatory
behavioral control that is consistent with the psycholog-
ical findings. Section 3 introduces ACS2, providing
details to all relevant processes as well as compar-
ing the learning processes to the anticipatory behav-
ioral control framework. Section 4 introduces a rat
experiment and compares behavior of ACS2 with
that of the rats. Section 5 studies two further rat
experiments. In these experiments additional antici-
patory processes are simulated in ACS2 to solve the
tasks. Section 6 summarizes and offers conclusions
on the findings.

2 Anticipations Control Instrumental 
Behavior: Recent Experimental 
Evidence in Animals and Humans

A legacy of behaviorism, which restricted itself to
objectively observable behavioral phenomena and dis-
regarded any cognitive- or even consciousness-related
explanations of behavior, is that in artificial intelli-
gence learning is mostly considered as being the for-
mation of stimulus–action connections associated
with previous reinforcement sensations. This notion
can be traced back to Thorndike’s “law of effect,”
according to which the presentation of a reinforcer
following an action strengthens a connection between
the stimulus or situation present when the action is
performed and the action itself so that subsequent
presentations of the stimulus elicits the action as a
response (Thorndike, 1911). 

More recently, though, it has become clear that
learning theories based simply on reinforcement are
insufficient to explain all observed behavior in cogni-
tive psychology experiments. This section provides
evidence for anticipations controlling behavior in ani-
mals and humans. Moreover, a framework of anticipa-
tory behavioral control is sketched.

2.1 Evidence in Experiments with Animals

The crucial role of action–outcome relations in instru-
mental behavior of animals was first acknowledged by
Tolman and his collaborators (Tolman & Honzik,
1930; Tolman, 1932, 1949). Tolman’s major argument
for the insufficiency of traditional behaviorism is the
observation of latent learning. In a typical latent learn-
ing experiment by Tolman and Honzik (1930) two
groups of rats explore a multiple T maze in several tri-
als, with the first group receiving reinforcement
(food) at the end of the maze and the second group
not. It is shown that the rats in the second group move
toward the end of the maze faster once food is also
provided to them. This shows that the rats must have
formed a predictive model representation of their
environment that they subsequently exploit to solve an
explicit task. 

Although the diverse latent learning experiments
(cf. Thistlethwaite, 1951 for an overview) have been
subject to several critiques, convincing experimental
demonstrations of animal action–outcome learning
have been given by the use of an outcome-devaluation
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procedure, first employed by Adams and Dickinson
(1981). Let us consider an outcome-devaluation
experiment by Colwill and Rescorla (1985), which we
will investigate throughout this work: A group of rats
is first trained to perform two different actions that
lead to two different outcomes (e.g., lever pressing
leads to food pellets and chain pulling leads to a
sucrose solution). After training, one of the two out-
comes is devalued by associating it with a mild nausea
(in this case lithium chloride, LiCl). When the rats are
subsequently given the choice between the perform-
ance of the two actions in an extinction phase, in
which no reinforcement is provided, the animals
clearly prefer the action that previously led to the non-
devalued outcome. Figure 1 shows the experimental
setup schematically.

Obviously, the animals did not respond to the sit-
uation with any action that was directly reinforced
before, but rather expectations of the forthcoming out-
come of the available actions led to the avoidance of
the previously devalued outcome. Thus, animal
behavior is at least partly determined by anticipations
of expected action outcomes. The result suggests three
conclusions: First, the animals have not only acquired
stimulus–response (S–R) relations, but also some rela-
tions about which actions will lead to which outcome,
that is, response–outcome (R–O) associations. Second,
the acquired R–O representations are involved in the
propagation of the subsequently modified outcome
value (devaluation). Third, and most important, the
(modified) R–O representations influence the choice
of behavior. In Section 5.4 we examine performance
of ACS2 in this experiment validating the three sug-
gested conclusions. 

In a further experiment, Colwill and Rescorla
(1990) examined the impact of the situational context
on an animal’s choice of actions with different out-
comes. The assignments of two different outcomes to

two different actions were reversed in the presence of
discriminative stimuli (see Figure 2). In one setting,
for example, rats received food pellets for pressing a
lever and a sucrose solution for pulling a chain in the
presence of noise, whereas in the presence of light,
lever pressing resulted in sucrose and chain pulling
resulted in food pellets. After this discrimination
training one of the two outcomes, say, sucrose, was
devalued by pairing its consumption with a mild nau-
sea. Finally, the animals were again given the choice
between the two actions in the presence of either the
noise or the light. They clearly preferred the action
under the present stimulus that previously resulted in
the nondevalued outcome (in our case, food pellets).
Particularly, the rats preferred lever pressing in the
presence of noise whereas they preferred chain pulling
in the presence of light. This preference is again unex-
plainable by S–R theories since the devaluation was
experienced in the absence of any pressing or pulling
action. Simple stimulus associations are not sufficient,
either, since the action dependence is the crucial
ingredient of the experiment. Thus, as Colwill and
Rescorla (1990) argue, the rats have acquired hierar-
chical S–(R–O) representations that enable them to
predict the outcomes of their actions dependending on
the given situation. Consequently, they preferred that
action that in the present situation led to the relatively
more desirable outcome. Similar behavior in ACS2 is
demonstrated in Section 5.5.

The impact of R–O relations on animal behavior
as well as their conditionalization to discriminative
situational contexts has been demonstrated in numer-
ous other experiments (cf. Roitblat, 1994; Rescorla,
1990, 1991, 1995; Dickinson, 1994; Pearce, 1997). Of
course, this does not exclude that S–R and S–O rela-
tions contribute to the control of animal behavior.

Figure 1 In Colwill and Rescorla (1985), rats were able
either to press a lever or pull a chain (R1, R2) that led to
either food pellets or sucrose. After the devaluation of one
outcome (O1), the action that previously led to the other
outcome (O2) was preferred. The result is not explainable
with a stimulus–response approach.

Figure 2 Colwill and Rescorla (1990) showed that some
forms of situation-dependent R–O relations are learned
by rats. After the rats were tought different S–(R–O) rela-
tions (light or noise in combination with pressing a lever or
pulling a chain leads to food pellet or sucrose), and one
outcome was devalued, the action that, dependent on the
situation (light or noise), previously led to the other out-
come was preferred.
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However, the available evidence for the acquisition of
contingent R–O relations, which are conditionalized
to discriminative stimuli if necessary, is by far
stronger than the evidence for direct S–R associations.
Thus, anticipations of the expected outcomes of
actions are a central part of animal behavioral control.

2.2 Evidence in Experiments with Humans

The emphasis of the role of action–outcome anticipa-
tions in animal action control has its pendant in the
classical ideomotor hypothesis (IMH) of human
action control. According to the IMH, humans (and
animals) select and initiate voluntary actions by an
anticipation of their sensory outcomes:

An anticipatory image, then, of the sensorial conse-

quences of a movement, plus (on certain occasions)

the fiat that these consequences shall become actual,

is the only psychic state which introspection lets us

discern as the forerunner of our voluntary acts.

(James, 1890/1981, p. 501) 

Although the IMH was widely acknowledged at the
end of the 19th century (Harle, 1861; Lotze, 1852;
Münsterberg, 1889), it soon fell into disrepute because
the notion that instrumental behavior might be deter-
mined by only introspectively available mental states
like “anticipatory images” was not respectable in the
upcoming rigorous behaviorism (cf. Greenwald,
1970). Recently however, the IMH has experienced a
revival in theoretical considerations (e.g., Hoffmann,
1993; Prinz, 1990, 1997; Hommel, 1998) as well as in
experimental research (e.g., Elsner & Hommel, 2001;
Hommel, 1996; Stock & Hoffman, 2002; Kunde,
2001; Hoffmann, Sebald, & Stöcker, 2001; Ziessler,
1998; Ziessler & Nattkemper, 2001).

For an empirical confirmation of the IMH two
things need to be shown: First, when performing goal-
oriented actions, primarily associations between the
performed actions and their contingent sensory out-
comes should be formed instead of associations
between stimulus conditions and actions. Second,
anticipations of the expected outcomes should be the
forerunners of action initiation. The following exem-
plar study strongly supports the IMH.

To examine the impact of action outcomes as
forerunners of action initiation, Kunde (2001) came
up with the simple but straightforward idea of explor-

ing R–O compatibility effects. Participants were
required to perform as quickly as possible, for exam-
ple, a strong key press to a red signal and a soft key
press to a green signal. In the compatible R–O condi-
tion the strong key press was consistently followed by
a loud tone and the soft key press by a soft tone. In the
incompatible condition the action–outcome assign-
ments were reversed. Although the tones were exclu-
sively delivered after the required action had been
initiated, the action–outcome compatibility neverthe-
less substantially influenced response times: On aver-
age, participants responded about 50 ms faster if the
required actions resulted in compatible outcomes than
if they resulted in incompatible outcomes. Since influ-
ences of possible associations between the response
signals and the outcome tones were ruled out by a
control experiment, “[the results] confirm the central
assumption of IMH that anticipatory effect representa-
tions become endogenously activated for the purpose
of response selection” (Kunde, 2001, p. 393).

To summarize, there is growing evidence that
goal-oriented behavior in animals as well as in
humans is to a great part determined by anticipations
of the expected outcomes of available actions. Behav-
ioral control by outcome anticipations necessarily pre-
supposes the learning and representation of consistent
R–O relations. The integration of discriminative stim-
ulus conditions seems to be a secondary process by
which R–O relations become conditionalized, that is
S–(R–O) representations are formed.

2.3 Anticipatory Behavioral Control: A 
Tentative Framework

Hoffmann (1993) proposed a tentative framework for
the acquisition of behavioral competence that takes
the primacy of R–O learning as well as the condition-
alization of R–O relations on relevant situational con-
texts into account. The framework departs from the
following basic assumptions (cf. Figure 3):

1. It is supposed that any voluntary action is pre-
ceded by an anticipation of to-be-reached out-
comes. Hereby, a voluntary action is defined as
performing an action to attain some desired out-
come. Thus, a desired outcome, as general and
imprecise as it might be specified in the first
place, has to be represented in some way before a
voluntary action can be performed. 

 at University of Wuerzburg 305 on November 8, 2010adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Butz & Hoffmann Anticipations Control Behavior 79

2. The real outcome of the act is compared with the
anticipated outcome. If there is sufficient coinci-
dence between what was desired and what really
happened, representations of the just-performed
action and the experienced outcomes become
interlinked, or an already existing link is strength-
ened. If there is no sufficient coincidence, no link
is formed, or an existing link is weakened. This
formation of integrated action–outcome represen-
tations, corresponding to the experienced contin-
gencies, is considered as being the primary
learning process in the acquisition of behavioral
competence. 

3. It is assumed that situational contexts that are
present during action performance become inte-
grated into action–outcome representations, if
they systematically modify the contingencies
between actions and outcomes and/or if a certain
action–outcome episode is systematically accom-
panied by always the same situational context.
This conditionalization of sufficiently stable
action–outcome relations is considered as being a
secondary learning process in the acquisition of
behavioral competence.

4. An “awakening” need or a concrete desire acti-
vates the action-outcome representations, in which
the outcomes sufficiently coincide with what is
needed or desired. Thus, the anticipations of out-
comes address the actions that are represented as
being appropriate to produce the outcome. If the
activated action–outcome representations are con-
ditionalized, the coincidence between the stored
conditions and the present situation is checked. In
general an action will be performed that in the
present situational context most likely produces
the anticipated outcome. 

5. Conditionalized action–outcome representations
can also be addressed by stimuli that correspond
to the represented conditions. Thus, a certain situ-
ational context in which repeatedly a certain out-
come has been produced by a certain action can
elicit the readiness to produce this outcome by
that action again.

Certainly, the sketched framework is a rather
rough one that still requires numerous specifications.
However, it integrates many important aspects that are
believed to underly the acquisition of behavioral com-
petence into one common framework. First, it takes
the well-established insight into account that organis-
mic behavior is almost always goal oriented instead of
being stimulus driven. Second, as learning is assumed
to be driven by comparisons between anticipated and
real action outcomes, the anticipations determine
which outcomes operate as reinforcers. 

Thus, the framework merges classical RL, assum-
ing the expectation of a direct reinforcer, with latent
learning (or learning of a predictive environmental
model), assuming the expectation of outcomes with-
out immediate value. Third, the framework considers
the recent evidence that anticipations of outcomes are
indeed forerunners of action initiation, as has already
been proposed more than 100 years ago. Finally, stim-
ulus-driven habitual behavior is also covered, as it is
assumed that representations of action–outcome rela-
tions become conditionalized to the typical contexts in
which they are experienced. 

As can be seen, the framework comprises many
different aspects of cognitive psychology research and
consequently appears to be a useful departure point
for further experimental and simulation studies of
organismic behavioral learning.

3 ACS2

The anticipatory learning classifier system ACS
(Stolzmann, 1997) was originally intended to simulate
and evaluate Hoffmann’s learning theory of anticipa-
tory behavioral control (Hoffmann, 1993). ACS is a
rule-learning system that learns and generalizes on-
line a predictive model of its environment. Each rule,
or classifier, consists of three basic parts, a condition,
an action, and an effect. The complete set of these
classifiers, the population, represents the complete

Figure 3 The theory of anticipatory behavioral control
emphasizes the initial bias toward learning action–effect
relations. The consideration of situational dependencies
is regarded as a secondary process.
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current knowledge about the environment. RL tech-
niques are applied to adapt behavior.

This section introduces ACS2, the current state-
of-the-art of ACS including genetic generalization and
further modifications. Moreover, ACS2 is compared
to the theory of anticipatory behavioral control. First,
a background of related artificial learning systems is
provided.

3.1 Background

All learning systems that represent and utilize predic-
tions of future states to adapt behavior are related to
ACS2. One of the first approaches in this respect was
pursued in Sutton’s dynamical architecture Dyna (Sut-
ton, 1991b). In Dyna an environmental model is
learned for the further improvement of RL capabili-
ties. With the learned environmental model, anticipa-
tory behavioral processes can also be simulated.
Whereas previous Dyna approaches usually explicitly
stored each experienced situation–action–resulting-
situation triple with statistics, ACS2 generalizes on-
line over perceptual attributes. Thus, ACS2 is basi-
cally the next step in the general Dyna architecture.
Several algorithms and processes introduced in this
work actually stem from work on Dyna. 

Holland (1990) proposed a somewhat similar idea
in the learning classifier system framework (Holland,
1976; Lanzi, Stolzmann, & Wilson, 2000). The idea is
to include tags in the message list (comparable to a
feature vector) that allow the distinction of predic-
tions, perceptions, actions, and so forth. Riolo (1991)
integrated this concept in his CFSC2 system showing
that the system is able to form a predictive environ-
mental model and use the model to adapt behavior.
However, CFSC2 did not apply any generalization
mechanisms so that the learning classifier system
spirit was somewhat lost. Moreover, the tags appear
hard to handle and seem to cause more interference
than benefit. 

Other related systems with predictive environ-
mental model representations include model-learning
artificial neural networks (NNs) as well as anticipa-
tory learning classifier systems (ALCSs). On the NN
side, for example, Tani (1996) succeeded in the simu-
lation of model-based learning on a mobile-robot plat-
form. His recurrent neural net (RNN) succeeded in
diminishing the state-prediction error. Moreover it
was shown that planning was possible once the model

was present in the RNN and the net was situated in the
environmental context. Problems appeared to be scal-
ability and reliability of the model-learning approach
as well as the difficulty of determining the accuracy of
the predictions.

On the ALCS side, Drescher (1991) provided an
early approach (not yet calling the system an ALCS).
Based on Piagetian development theory he developed
a schema mechanism that forms a generalized envi-
ronmental model on-line. He was able to show inter-
esting developmental stages in his system, drawing
relations to the Piagetian theory of development.
However, his system did not prove to be robust, as can
be seen in his limited experimental results. Further
investigation of Drescher’s ideas, however, seems
worthwhile.

Recently, another ALCS, termed YACS, has been
introduced that applies different learning mechanisms
but evolves a similar model (Gérard & Sigaud,
2001b). Also a generalization mechanism was added
to YACS that proved to evolve maximally compact
environmental representations (Gérard & Sigaud,
2001a). It is necessary to study further the differences
between YACS and the current ACS2 system.
Although more research has been published with
ACS2 and more problems solved, YACS has been
shown to solve certain maze tasks with a smaller
number of overall classifiers. The size of the environ-
mental model, however, is similar in both systems.

Another ALCS system is the dynamic expectancy
model (Witkowski, 1997). The system builds an envi-
ronmental model consisting of rules, similar to ACS2.
However, although Witkowski mentions a generaliza-
tion mechanism, the mechanism has not been applied
in the provided results. Interesting animat behavior
has nevertheless been shown as, for example, extinc-
tion behavior in Witkowski (2000). 

Finally, we want to mention Robert Rosen’s con-
tribution to the notion of anticipations. His book on
anticipatory systems (Rosen, 1985) was the first con-
tribution that approached anticipations from a mathe-
matical perspective. Later, Rosen sees anticipations as
a necessary ingredient in the manifestation of life
(Rosen, 1991). Anticipations allow a new kind of
complexity that is mandatory for living beings. These
propositions might sound rather strong and we do not
pursue them any further herein. We rather intend to
contribute to the general idea and importance of antic-
ipations in adaptive behavior. For this, we give an
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overview of the investigated ACS2 system in the next
sections.

3.2 Agent and Knowledge Representation

Similar to other agent architectures, ACS2 autono-
mously interacts with an environment. In a behavioral
act at a certain time t, the agent perceives (or senses) a
certain situation ∈  (where L de-
notes the string length of a sensed situation, m denotes
the number of possible values for each attribute in

, and  denotes a possible value). The system
then acts upon the environment executing an action

 (where A denotes the set of all possible ac-
tions). After the execution of , the environment
provides a scalar reinforcement R.

While interacting, ACS2 iteratively learns a pre-
dictive model of the encountered environment. The
model is represented by a population [P] of condition–
action–effect rules, that is, the classifiers. Each classi-
fier predicts action effects given the specified condi-
tion. A classifier in ACS2 always specifies the state of
all resulting sensory attributes. It consists of the fol-
lowing main components:

• Condition part (C) specifies the set of situations
in which the classifier is applicable. 

• Action part (A) proposes a possible action.
• Effect part (E) predicts the effects of the proposed

action in the specified conditions.
• Quality (q) measures the accuracy of the pre-

dicted effects.
• Reward prediction (r) estimates the long-term

reinforcement encountered after the execution of
action A in condition C.

• Immediate reward prediction (ir) estimates the
direct reinforcement encountered after execution
of action A in condition C.

C and E consist of the values perceived from the en-
vironment and “#” symbols (i.e., C, E ∈ ).
A # symbol in C, called the don’t care symbol, de-
notes that the classifier matches any value in this at-
tribute. A # symbol in E, called the pass-through
symbol, specifies that the classifier predicts that the
value of this attribute will not change after the execu-
tion of the specified action. Non pass-through sym-
bols in E anticipate the change of the particular
attribute to the specified value. The action part A spec-

ifies any action possible in the environment. The
measures q, r, and ir are scalar values where q ∈[0,1],

, and . A classifier with a quality q
greater than the reliability threshold  (usually set to
0.9) is called reliable and becomes part of the internal
environmental model. A classifier with a quality q
lower than the inadequacy threshold  (usually set to
0.1) is considered as inadequate and is consequently
deleted. The immediate reward prediction ir is sepa-
rated from the usual reward prediction r to enable
proper internal RL updates. All parts are modified ac-
cording to an RL mechanism, and according to two
model-learning mechanisms specified in Section 3.3.

Additionally, each classifier comprises a mark
(M) that records the values of each attribute of all situ-
ations in which the classifier did not predict correctly
sometimes. The mark has the structure M = (m1, … ,
mL). Each attribute  records all val-
ues at position i of perceptual strings in which the
specified effect did not take place after execution of
action A. Moreover, each classifier specifies a genetic
algorithm (GA) time stamp , an anticipatory learn-
ing process (ALP) time stamp , an application
average aav, an experience counter exp, and a numer-
osity num. The two time stamps record the time of the
last learning module applications. The application
average estimates the frequency with which the classi-
fier is updated (i.e., part of an action set). The experi-
ence counter counts the number of applications. The
numerosity denotes how many identical classifiers this
macroclassifier represents. 

3.3 Learning Processes

Figure 4 illustrates the interaction of ACS2 with its
environment and its learning application in further
detail. After the perception of the current situation

, ACS2 forms a match set [M] comprising all
classifiers in the population [P] whose conditions are
satisfied in . Thus, [M] holds the complete pre-
dictive knowledge for the current situation. Next, an
action  is chosen according to the applied behav-
ioral policy. Herein, a simple ²–greedy strategy is
applied, as is often used in RL (Sutton & Barto, 1998).
With respect to , an action set [A] is generated
that consists of all classifiers in [M] whose action
equals . Thus, [A] comprises the predictive
knowledge restricted to the chosen action given the
current situation. After the execution of  and the

σ t( ) ι1 … ιm, ,{ }L

σ t( ) ιi

α t( ) A∈
α t( )

ι1 … ιm #, , ,{ }L

r ℜ∈ ir ℜ∈
θr

θi

mi ι1 … ιm, ,{ }⊆

tga

talp

σ t( )

σ t( )

α t( )

α t( )

α t( )
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reception of reinforcement , classifier parameters
are updated by the ALP and the applied RL technique
and new classifiers might be generated as well as old
classifiers deleted by the ALP and the genetic-gener-
alization process.

The basic learning mechanisms are two interact-
ing model-learning mechanisms and one RL mecha-
nism. The ALP is the specializing component of the
model-learning mechanism. The ALP evaluates rules
and detects which rules are over-general. Once an
over-general rule is detected, specialized offspring is
generated. Genetic generalization, on the other hand,
is an indirect generalization procedure. Accurate clas-
sifiers are chosen for generating generalized offspring.
In turn, over-specialized as well as inaccurate classifi-
ers are deleted.

3.3.1 Anticipatory Learning Process The ALP up-
dates the quality q, the mark M, the ALP time stamp

, the application average aav, and the experience
counter exp. The quality q is updated according to the
classifier’s anticipation. If a classifier correctly speci-
fied changes and nonchanges, called expected case, its
quality is increased ( ). If the classi-
fier specifies an incorrect effect, termed unexpected
case, its quality is decreased ( ). Parame-
ter  denotes the learning rate of ACS2.

Additional to the parameter updates, the ALP
generates specialized offspring and/or deletes inaccu-
rate classifiers. Specialized classifiers are generated
in two cases. In the expected case, a classifier might
be generated if the mark M differs from the situation

 in some attributes. This means that the classifier
previously encountered situation(s) (characterized by
the mark) in which its predictions were incorrect.
Thus, the condition of the new classifier is specialized
in those differing attributes. In the unexpected case, a
classifier is generated if the effect part of the classifier
can be further specialized (by changing pass-through
symbols to specific values) to specify the perceived
effect correctly. All positions in condition and effect
part are specialized that change from  to .

A classifier is also generated if there was no clas-
sifier in the actual action set [A] that anticipated the
effect correctly. In this case, covering applies, in which
a classifier is generated that is specialized in all
attributes in condition and effect part that changed
from  to .

The attributes of the Mark M of a new classifier
are initially empty. Quality q is set to 0.5 in the cover-
ing case and is inherited from the parental classifier
(minimally set to 0.5) in the other reproduction cases.
Reward prediction r and immediate reward prediction
ir are set to 0 in the covering case but are inherited
from the parent in the other cases. For further details

ρ t( )

Figure 4 During one agent/environment interaction, ACS2 forms a match set representing the predictive
knowledge with respect to the current perceptions. Next, it generates an action set representing the knowl-
edge about the consequences of the chosen action in the given situation. Classifier parameters are updated
by reinforcement learning (RL) and the anticipatory learning process (ALP). Moreover, new classifiers might
be added and old classifiers might be deleted by genetic generalization and ALP.

talp

q q β 1 q–( )+←

q q β– q←
β 0,1[ ]∈

σ t( )

σ t( ) σ t 1+( )

σ t( ) σ t 1+( )
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on the learning process please refer to (Stolzmann,
2000; Butz, 2002). 

3.3.2 Genetic Generalization Mechanism Although
the ALP specializes classifiers in a quite competent
way, over-specializations can occur sometimes, as
Butz (2002) has studied. Since the over-specialization
cases can be caused by various circumstances, a
genetic generalization (GG) mechanism was applied
that, interacting with the ALP, results in the evolution
of a complete, accurate, and maximally general
model. The basic framework of the genetic algorithm
was derived from Wilson’s accuracy-based learning
classifier system XCS (Wilson, 1995). The mecha-
nism works as follows.

After the application of the ALP, it is determined
if the mechanism should be applied. Classifiers are
reproduced in the action set [A] proportionally to their
quality value q. Reproduced classifiers are crossed
and mutated in the conditions. Hereby, a generalizing
mutation is applied that randomly changes specialized
attributes back to don’t-care symbols. If a generated
classifier already exists in the population, the new
classifier is discarded and if the existing classifier is
not marked its numerosity is increased by one. If no
identical classifier exists, the quality q of the new
classifier is decreased by 0.5 and it is inserted in the
population. If an action set [A] exceeds the action set
size threshold , excess classifiers are deleted in [A].
Deletion causes the extinction of low-quality as well
as over-specialized classifiers. 

3.3.3 Subsumption To further emphasize a proper
model convergence, subsumption is applied similarly
to the subsumption method in XCS (Wilson, 1998). If
a new classifier is generated, regardless if by ALP or
GG, the set is searched for a subsuming classifier. The
new classifier is subsumed if a classifier exists that is
more general in the conditions, specifies the same
effect, is reliable (its quality is higher than the thresh-
old ), is not marked, and is experienced (its experi-
ence counter exp is higher than the threshold ). If
there exists more than one possible subsumer, the sub-
sumer with the most don’t-care symbols is chosen. In
the case of a draw, the subsumer is chosen at random.
If a subsumer was found, the new classifier is dis-
carded and either quality or numerosity of the sub-

sumer is increased dependent on if the new classifier
was generated by ALP or GG, respectively.

3.3.4 Interaction of ALP and GG Several distinct stud-
ies in various environments revealed that the interac-
tion of ALP and GG is able to evolve a complete,
accurate, and maximally general model in various
environments in a competent way (cf. Butz, Goldberg,
& Stolzmann, 2000; Butz, 2002). The basic idea
behind the interacting model-learning processes is that
the specialization process extracts as much informa-
tion as possible from the encountered environment
continuously specializing over-general classifiers. The
GG mechanism, on the other hand, randomly general-
izes exploiting the power of a genetic algorithm where
no more additional information is available from the
environment. The ALP ensures diversity and prevents
the loss of information of a particular niche in the
environment. Only GG generates identical classifiers
and causes convergence in the population.

3.4 Behavioral Policy

The behavioral policy of ACS2 is directly represented
in the evolving model. Each classifier specifies the
reward prediction estimate r and the immediate
reward prediction estimate ir, which control behavior.
Thus, the reward estimates are dependent on the struc-
ture of the classifiers so that the environmental model
as a whole needs to be specific enough to prevent mis-
leading averaging of the estimates. Only if no averag-
ing takes place is it assured that the classifier
population can represent an optimal policy within the
predictive model. If averaging takes place, model
aliasing (Butz, 2002) might prevent the evolution of
an optimal policy as previously identified in different
contexts (e.g., Whitehead & Ballard, 1991; Dorigo &
Colombetti, 1997).

As visualized in Figure 4, the reward-related
parameters r and ir are updated after the action is exe-
cuted, the next environmental situation perceived, and
the subsequent match set formed. The update com-
bines immediate reinforcement  with discounted
future reward. 

(1)

θas

θr

θexp ρ t( )

r ← r β ρ t( )(+
   + γ maxcl M[ ] t 1+( ) cl.E #{ }L≠∧∈ cl.q cl.r⋅( ) r– )
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(2)

Again, parameter  denotes the learning rate
biasing the estimates more or less toward a recently
encountered reward. Parameter  denotes the
discount factor similar to Q-learning (Watkins, 1989).
In contrast to Q-learning, however, the rules may be
applicable in distinct situations. The values of r and ir
consequently specify an average of the resulting
reward after the execution of action A over all possible
situations of the environment in which the classifier is
applicable. Thus, model aliasing can take place.

Usually, ACS2 applies a simple ²-greedy action-
selection strategy. An action is chosen at random with
a probability ² and otherwise the best action is chosen.
The action specified by the classifier with the highest
qr value in a match set [M] is considered the best
action in ACS2.

The behavioral capabilities of ACS2 will be of
major interest in the following sections. We will show
how the reinforcement values can be propagated as
well as how policy execution can be modified to gen-
erate anticipatory behavior. The next section, how-
ever, first compares ACS2 to the theory of
anticipatory behavioral control.

3.5 Relation to Anticipatory Behavioral 
Control

With a picture of ACS2 in hand, we can now com-
pare the learning and policy mechanisms in ACS2 to
the theory of anticipatory behavioral control, intro-
duced in Section 2.3. All five theoretical points are
addressed.

The first point addresses the representation of pre-
dictions before action execution and their control of
behavior. Before action execution, ACS2 always
forms a match set [M] that represents all predictive
and reinforcement knowledge in the current situation.
Explicit anticipations can be formed using the infor-
mation in [M]. Thus, an action can be selected that
promises to lead to a desired outcome. Section 5.3
introduces a mechanism that explicitly generates pre-
dictions beforehand and causes explicit anticipatory
behavior as stated in the theory.

The second point matches perfectly with the ALP.
In the ALP, anticipated outcomes are compared to real
outcomes. Moreover, action–effect relations become

interlinked or strengthened by generating a new clas-
sifier by the covering mechanism or by increasing the
quality of an old classifier. In ACS2, one coincidence
is enough to form the link. Other more constrained
methods seem possible. Insufficient coincidences are
weakened as manifested in the quality decrease and
deletion of classifiers.

The third point addresses the consideration of situa-
tional context that is, according to the theory, integrated
into the action–effect relations. The consideration of sit-
uational context is realized in the marking process and
the consequent specialized offspring generation in an
expected case. Since the specialization of action
effects always comes first, this further conditional
specialization is indeed a secondary process in ACS2.

The fourth point is not realized in its explicit form
in ACS2. ACS2’s action policy is still mainly stimu-
lus-response driven since it is mainly based on the
reinforcement prediction r. However, the predictive
knowledge also has an influence as manifested in the
additional consideration of the quality q in the deter-
mination of the current best action as well. Section 5
shows how anticipations can directly influence action
selection or how anticipations can influence action
selection mediated by an alternation in the reward pre-
diction value r.

The fifth point is the predominant factor determin-
ing behavior in ACS2. Stimuli trigger match set genera-
tions that trigger action selection. Thus, conditionalized
action–outcome relations are indeed addressed by stim-
uli.

Generalization is not explicitly addressed in the
learning framework. In ACS2, genetic generalization
can be compared to a continuous weakening of condi-
tions in action–effect bonds. Although generalization
has not been considered in the theory, the mechanism
contributes strongly to model condensation and gener-
alization. It can be regarded as a general process of
forgetting unimportant details. Subsumption has a
similar effect. Reinforcement learning is still a relict
of the previous behavioristic thinking and might even-
tually become completely modified in ACS2. In this
work, though, we show that anticipation-controlled
behavior can already be simulated in the current
framework.

Although certainly not a perfect match, many
points of the proposed framework are implemented in
ACS2. Section 5 introduces additional mechanisms
that make the system match even closer. We want to

ir ir β ρ t( ) ir–( )+←

β 0,1[ ]∈

γ [0,1)∈
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note that ACS2 is certainly not the only possibility to
satisfy the framework nor is it necessarily the best
one. However, it is a framework that matches closely.
Further advantages of ACS2 are the great generaliza-
tion capabilities as well as the rule-based representa-
tion that allows explicit knowledge extraction. As will
be seen below, generalization and rule representation
enable or at least facilitate further research on the idea
of anticipatory behavior. The next sections show how
animal behavior matches with behavior simulated
with ACS2 as well as how anticipatory cognitive
processes can control behavior in ACS2.

4 Stimulus-Dependent Response–Effect 
Relations

To validate the idea of anticipations controlling behav-
ior, ACS2 is now and in the next section compared to
results of three psychological experiments previously
conducted with rats. The intention is to show that
ACS2 is able to mimic animal behavior as well as that
anticipatory behavioral control is necessary for simu-
lating similar behavior. The performance of ACS2 is
compared to other artificial learning frameworks as
well. This section introduces a rat experiment pub-
lished in Rescorla (1990). The experiment is simu-
lated and performance of ACS2 is evaluated. 

4.1 The Rat Experiment: Hierarchical S–(R–O) 
Relations

The major intention of Rescorla (1990) was to evalu-
ate whether hierarchical [S–(R–O)] relations are
formed in rats. To evaluate this suspicion, Rescorla
trained rats with a standard procedure teaching vari-
ous R–O relations with respect to discriminative stim-
uli.

Figure 5 shows the experimental setup. The
experiment was subdivided into three stages. During
the first stage, each animal was trained with three
stimuli [i.e., light (L), noise (N), and tone (T)] in
which two different responses (i.e., pressing a lever or
pulling a chain) were reinforced with one of two out-
comes. In the presence of light (L), the associative R–
O relations R1–O1 and R2–O2 were in effect, each of
which were also in effect in one of the auditory stim-
uli. Thus, during the first stage, L shared the R1–O1

relation with N and it shared the R2–O2 relation with

T. Furthermore, inter-trial intervals (ITI) were pre-
sented in which no stimulus was present and no action
had any effect. During stage 2, neither action had any
effect and only light stimuli were presented. Thus, the
learned R1–O1 and R2–O2 were extinct during that
stage. In the first and second stages, always either
chain or lever were present but not both. Finally, in
stage 3 the actions of the rats were monitored under
the auditory stimuli in the presence of chain and lever.
Actions again did not cause any effect. Rescorla
(1990) supposed that only if the rats form hierarchical
S–(R–O) relations, could the extinction phase affect
the preference during the test phase to execute that
action that previously produced a not-extinct R–O
relation. For further details on the rat experiment the
interested reader is referred to the cited article.

The suspicion was confirmed. Rats significantly
prefer that action that resulted in the R–O relation dur-
ing phase 1 that was not extinct during phase 2 as
depicted in Figure 6. Thus, R–O relations must have
been formed that are extinct rather independently of
situational context. It was also observed that the mean
response time during stimulus presentation is signifi-
cantly higher than during the ITI, which confirms that
the rats learned that a stimulus is necessary to obtain
reinforcement successfully. Moreover, during the sec-
ond half of the test phase the response frequency
declined significantly on stimulus presentation.

4.2 Simulating the Experiment with ACS2

To specify the simulation of the rat experiment with
ACS2, we need to define perceptions, actions, rein-
forcement, and the length of each experimental stage.

Figure 5 In the experiment by Rescorla (1990), rats
learn R–O relations (pressing a lever or pulling a chain
leads to food pellets or sucrose) that depend on discrimi-
native stimuli (noise, light, or tone). In phase 2, the asso-
ciations R1–O1 and R2–O2 are extinct by providing no
more food in the light condition. Consequently, dependent
on the presented stimulus, the rats prefer to execute that
action in the test phase that led to the R–O relation in
phase 1 that was not extinct in phase 2. Thus, hierarchical
S–(R–O) relations influence behavior.
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We code the experiment as a two-step environment in
which ACS2 can act upon one of the manipulanda
(lever or chain) in the first step and then consume the
resulting reinforcer in the second step. Each time a
reinforcer is consumed, the environment is reset and a
new stimulus is presented. 

Situations are coded as a binary string of length 7
denoting the presence of food, sucrose, lever, chain,
noise, light, and tone. ACS2 can execute four actions:
“pull,” “push,” “eat,” and “do nothing.” A reinforce-
ment of 1,000 is provided when eating food pellets or
sucrose. The lengths of the three phases are deter-
mined according to the steps that are experienced by
the rats. During the training phase, the rats were
trained for 20 successive days with two training ses-
sions per day with 16 trials with light and 8 trials each
with noise and tone per session. These are all in all
1,280 situation–action–result combinations. The same
number of combinations was presented to ACS2. In
one half of the combinations, light was present and in
the other half, either noise or tone was present. During
the subsequent six days, the rats received two extinc-
tion sessions per day in which 16 light presentations
took place. Thus, 192 extinction trials were presented
to ACS2. Finally, during the test session the rats
received four presentations each of the two auditory
stimuli. In this test phase, the mean response per
minute was monitored. For ACS2 we presented 160
cases and monitored behavior for each. For now, ITIs
were not presented to ACS2. The effect of ITIs on
ACS2 in this experiment is discussed later.

It seems obvious that ACS2 will not be able to
exhibit behavior comparable to the behavior of the rats.
As noted above, ACS2’s behavior is basically stimulus-
response driven. The reinforcement extinction causes a
decrease in the reward prediction values in the respec-
tive classifiers. Actions are selected according to the
reward prediction of classifiers. Effects are only taken
into account implicitly. Thus, how can the supposedly
hierarchical S–(R–O) relation be devalued? 

However, as Figure 6 reveals, ACS2 is able to
learn the S–(R–O) relation. It exhibits behavior quite
similar to that of the rats.1 ACS2 makes the distinction
and preferentially executes the action that is part of
the not-extinct R–O relation. Also, the difference
between different and same R–O combinations dimin-
ishes later in the test phase. According to Rescorla, the
differences in the rat behavior no longer reached sig-
nificance. Moreover, the decrease in performance fre-
quency can be observed in ACS2: the “do nothing”
and “eating” actions are executed increasingly often
during the test phase.

The differentiating behavior emerges from the
generalization process and the consequent generalized
environmental representation in combination with the

Figure 6 ACS2 exhibits behavior similar to the behavior
observed in rats in the simulation of the Rescorla (1990)
experiment. Depicted are the number of actions executed
in the beginning, after 60 steps, and after 140 steps in the
test phase by ACS2 and the mean action execution in the
beginning and in the second half of the experiment by the
rats. “Different” refers to the action that previously led to
the not-extinct R–O relation; “same” refers to the extinct
R–O relation. “Other” refers to the execution of an “eating”
or “do nothing” action in ACS2 during testing. “ITI” refers
to the mean response of pulling and pushing during inter-
trial intervals. Three similarities between the rat behavior
and the behavior of ACS2 can be observed: (1) The “dif-
ferent” action is preferred; (2) the preference decreases
over the test phase (difference between “different” and
“same”); and (3) the frequency of acting upon the manipu-
landa decreases (in ACS2: since the “other” actions are
increasingly executed; in the rats: decrease in mean
response per minute).
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reinforcement representation in the classifiers. ACS2
generates classifiers that specify accurate action–
effect relations with maximally general conditions. In
this experiment, ACS2 forms a classifier that specifies
that if either L or N is present, O1 will follow R1. Sim-
ilarly, it forms a classifier that specifies that if either L
or T is present, O2 will follow R2. When R1 and R2 are
now devalued in the L condition, R1 is consequently
also devalued in the N condition and R2 is devalued in
the T condition. Thus, ACS2 makes the distinction.

For a classifier to represent L or N in its condition
part in the chosen coding, it can only specify ¬T since
an explicit or representation is not possible in the con-
ditions of classifiers in ACS2 right now. Thus, the
result is only obtainable if no ITI is simulated. In a
simulation with ITI, ¬T is also applicable in the ITI
and consequently not sufficient to represent the rela-
tion. This suspicion was confirmed in experiments
with ITI in which ACS2 does not exhibit any differen-
tiation between the same and different R–O relations.
Moreover, when not applying genetic generalization
in the setting without ITI, the result was not achieva-
ble, either. The anticipatory learning process usually
generates the individual classifiers as well as the clas-
sifier with condition ¬T. In the test phase, the classi-
fier that specifies N–R1–O1 overrules the more general
but devalued classifier ¬T–R1–O1 so that the distinc-
tion does not apply. 

Several important observation were made in this
simulation. First, ACS2 exhibits an implicit S–(R–O)
structure since it differentiates between same and dif-
ferent R–O relations dependending on S in the test
phase. Second, emergent behavior results from the
interaction of the reinforcement representation in clas-
sifiers and the on-line generalized model. Although
the generalized representation might not be compara-
ble to the rats (the rats most probably did not specify
that if not T then R1–O1 but rather if L or N, then R1–
O1), it showed that the S–(R–O) structures can also be
obtained without any explicit hierarchical structure.
Finally, the results were obtained independent of
parameter settings. Thus, the results point to the plau-
sibility of the learning mechanism and the theory of
anticipatory behavioral control.

As a final point it is interesting to see how other
learning systems would behave. In model-free RL
approaches as well as model-based RL approaches
without on-line generalization the transfer would not
be possible at all since training, extinction, and test

phase differed in the setup structure (either lever or
chain was present during training and extinction but
both were present during testing). However, even if
the simulation would have been conducted in a way
that both manipulanda always were present, model-
based RL would not be able to show similar behavior
since it would learn all situation–action–effect rela-
tions exemplarily. For on-line generalizing model-free
RL mechanisms such as previous learning classifier
systems (Holland, 1976; Lanzi et al., 2000), the sys-
tem would not distinguish between the different out-
comes and would backpropagate simple reinforcement.
Thus, a learning classifier system would not distin-
guish between the outcomes. The comparison stresses
the importance of a predictive model representation in
combination with on-line generalization. Moreover, it
points out the necessary distinction between condi-
tions, actions, and effects. Only due to the condition-
alized generation of action–effect associations could
behavior match with the rat behavior.

5 Explicit Anticipations Influence 
Behavior

Whereas the previous section showed emergent antici-
patory behavior in ACS2, this section shows how the
evolving generalized environmental model can be
used to distribute reinforcement internally. It is shown
that reinforcement values can be adapted to draw con-
clusions that are appropriate but would not have been
possible without the generalized anticipatory model.
In more psychological terms, it is shown that ACS2 is
able to use its internal generalized environmental
model for distinct cognitive processes that allow a
“mental” adaptation of behavior.

The study herein is mainly based on the work
published in Stolzmann, Butz, Hoffmann, and Gold-
berg (2000). Due to the changes from ACS to ACS2,
though, some parts of the additional mechanisms have
changed. Moreover, genetic generalization is applied
throughout. To evaluate the mental adaptation possi-
bilities, ACS2 is tested in a simulation of the two rat
experiments published by Colwill and Rescorla (1985,
1990) introduced in Section 2.1.

This section recapitulates the response–effect
experiment by Colwill and Rescorla (1985) and
stresses its peculiarity. Next, anticipatory mechanisms
are introduced to ACS2 to enable the system to draw
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mental conclusions. Finally, performance of ACS2 is
revealed in the simulation of Colwill and Rescorla
(1985) as well as in the simulation of the more diffi-
cult stimulus–response–effect experiment (Colwill &
Rescorla, 1990).

5.1 Response-Effect Learning Task

The herein investigated response–effect learning task
was originally done with rats by Colwill and Rescorla
(1985). Section 2.1 already revealed the basic impli-
cations of the experiment. The intention was to inves-
tigate if and in what way rats evolve response–effect
(R–O) relations. 

Figure 1 gives an abstract view of the experiment.
Rats were tested in a three-stage experiment. First, they
were taught to execute two distinct possible actions R1

and R2 (pressing a lever and pulling a chain). One
action led to one type of (positive) reinforcer (sucrose)
and the other to a different (positive) reinforcer (food
pellet). Next, without the presence of lever or chain,
reinforcers were provided separately and one of the
reinforcers was devalued. Finally, the rats were tested
on if they would choose to press the lever or pull the
chain, which were simultaneously present during test-
ing. All three slightly different experimental settings
in the original work showed that the rats preferred the
action that previously led to the non-devalued rein-
forcer during the test phase. Figure 7 shows the per-

formance of the rats during the test phase in all three
settings. Additional to the observed successful dis-
tinction during testing, the rats also showed a decrease
in response frequency during testing. Moreover,
sucrose was always more appealing than food pellets.
Finally, also in the last experiment, in which one rein-
forcer was supplied until the rats were sated, the rats
showed the basic distinction. Only motivational influ-
ences, that is, the motivation to go for the not-sated
reinforcer, could have triggered the difference in this
case.

The experiment shows that rats must have formed
context-independent response–outcome associations
that control behavior. Once an outcome is devalued,
the associations that lead to the devalued outcome are
(possibly implicitly) devalued as well so that the rats
prefer to execute that action that led in phase 1 to the
outcome that was not devalued in phase 2. 

This outcome-dependent action selection can be
obtained neither by any model-free RL mechanism,
nor by model-based RL approaches without on-line
generalization. Model-free RL fails since it relies on a
direct interaction with the environment for learning
but the connection “action (pressing or pulling) leads
to the devalued reinforcer” is never encountered on-
line. Model-based RL can learn this association since
reinforcement can be propagated internally by means
of the learned predictive model (e.g. Sutton, 1991b).
However, only model-based approaches that general-

Figure 7 In three different settings, rats preferred the action that previously led to the still-valued reinforcer to
the one that led to the now less-valued one in the Colwill and Rescorla (1985) experiments. In the first and sec-
ond setting, one reinforcer was devalued by pairing its consumption with LiCl; in the last experiment one rein-
forcer was sated.
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ize on-line over perceptual attributes are able to solve
the transfer task since each experimental stage slightly
differs in its setup. Note that on-line generalization is
mandatory. Approaches that pregeneralize the input
space before learning, such as tile coding approaches
(e.g. Kuvayev & Sutton, 1996), cannot solve the prob-
lem since they would learn three different models for
the three stages and consequently would not be able to
draw the appropriate conclusion. (It is impossible to
provide an identical coding for each stage in this
experiment since it is essential that no manipulanda
are present during the devaluation phase.) 

Without any further enhancements, ACS2 is not
able to solve the task, either. To this point, the rein-
forcement distribution is only done during interaction
with the environment. Moreover, the policy is only
based on the reward prediction and the quality of the
evolving environmental model. The remainder of this
section shows that ACS2 can be enhanced to adapt its
behavioral policy further, exploiting the generalized,
internal environmental model. Hereby, reinforcement
is distributed internally, termed mental acting, or
explicit anticipations influence the behavioral policy,
termed lookahead action selection. ACS2 is able to
solve the task with either anticipatory mechanism. 

5.2 Mental Acting

In the mental acting approach, the classifier’s reward
prediction value r is updated internally (i.e., without
environmental interaction). Anticipated events are
formed in which reward predictions are evaluated and
modified in the classifiers. Thus, the behavior of
ACS2 is altered by executing mental actions.

Sutton (1991b) applied a similar approach to the
Dyna architecture. He showed that it is possible to
adapt behavior faster in static environments, and fur-
ther, to achieve a faster adaptivity in dynamic environ-

ments. The environmental model was stored in a
completely specialized, tabular form. The algorithm
randomly updated state–action pairs by anticipating
the next state and backpropagating the highest Q-
value additional to the expected direct reward.

Due to the on-line generalized model in ACS2,
the internal update process needs to be modified. First,
since classifiers usually only specify parts of the per-
ceptual attributes in their condition parts, classifiers
usually predict a set of possible next states and not an
exact situation–action–resulting-situation triple. Sec-
ond, the prediction of the next state is only valid to a
degree expressed in the quality of the classifier.
Finally, transitions are often represented by more than
one classifier. Thus, it is necessary to assure that the
relation between the classifier whose reward predic-
tion r is updated and the classifier(s) that cause the
update is reliable. 

A mental action is realized by comparing effect
parts of classifiers with condition parts of other classi-
fiers. Figure 8 shows the applied one-step mental act-
ing algorithm in pseudo code. The algorithm forms a
link set [L] that restricts the update to reliable classi-
fier relations.

The algorithm only updates reliable classifiers that
anticipate changes. This restricts the updates to mean-
ingful ones and makes sure that only sufficiently stable
action–outcome relations are modified. The link set [L]
includes all classifiers that could take place after a suc-
cessful execution of classifier cl. The restriction to
only those classifiers that actually explicitly specify
the attributes in C that are specified in cl.E is rather
strong. However, this restriction proved to be neces-
sary in the investigated tasks. Allowing more loose
connections did not result in the desired learning
effect. The one-step mental acting algorithm is exe-
cuted after each real executed action. The number of
executions is specified in the experimental runs.

Figure 8 The one-step mental acting algorithm in pseudo code.
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In more cognitive terms, mental acting is compa-
rable to a thought process that takes place independ-
ently of the current (outside) environment such as
mental problem solving, the imagination of certain
events, or even dreaming. Dreaming is recently more
and more recognized as a fundamental consolidation
process in learning (Stickgold, 1998) which is indeed
what mental acting is doing. Mental acting causes the
consolidation of memory, that is, the consolidation of
utility measures represented in reward prediction val-
ues.

Before we validate mental acting, another approach
to the problem is introduced that modifies the policy
determination.

5.3 Lookahead Action Selection

While mental acting influences action selection only
indirectly, lookahead action selection forms explicit
outcome anticipations before action execution. With
respect to the theory of anticipatory behavioral control
(Section 2.3) this approach explicitly realizes the first
point of the theory. All possible action outcome repre-
sentations are formed when performing lookahead
action selection. The reinforcement prediction in the
outcome, then, influences action selection. 

The actual algorithm is derived from the idea of a
tag-mediated lookahead (Holland, 1990) and the suc-
cessive implementation in CFSC2 (Riolo, 1991).
Although ACS2 already demonstrated its capability of
generating plans in the above section about model-
learning improvement, the possibility of lookahead
has not yet been combined with the reinforcement
learning procedure. This is the aim of the process in
this section. Instead of selecting an action according
to the highest qr value in the current match set [M], an

action is now selected according to the currently best
qr value for each possible action combined with the
best qr value in the anticipated resulting state. The
action selection algorithm is specified in Figure 9.

First, the algorithm generates an action array of
the usual values considered for action selection. Next,
the result of each action is predicted, and the highest
qr value in the consequent set of matching classifiers
is used to update the action values in the action array.
Note, as before for the best qr values, only classifiers
that anticipate a change are considered. Finally, the
algorithm chooses the consequent best action in the
resulting action array.

In combination with the applied ²-greedy policy,
instead of executing the best action, as considered pre-
viously during exploitation, the algorithm chooses the
best lookahead action for execution. For now, the
algorithm is a one-step lookahead procedure. Deeper
versions are possible. An animat could, for example,
determine how much time it can afford to invest in a
deeper action selection consideration and act accord-
ingly. However, the computational costs, which
increase exponentially with the depth, need to be con-
sidered. In the experiments herein, we leave the ques-
tion of scale-up on the side and concentrate on the
general effect on behavior.

5.4 ACS2 in the Response–Effect Learning 
Task

To validate the two anticipatory behavior approaches,
the above-described environment is simulated. During
the first phase, ACS2 can act upon a manipulandum
and consume the possible resulting reinforcer. The
consumption leads to a reinforcement of 1,000, the
perception of the environment without the food, and

Figure 9 Algorithmic description of the choose best lookahead action algorithm.

 at University of Wuerzburg 305 on November 8, 2010adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Butz & Hoffmann Anticipations Control Behavior 91

the generation of a new trial. Either lever or chain is
present in each trial during this phase. In the second
phase, the presence of one type of reinforcer is indi-
cated at random. The consumption of the devalued
reinforcer leads to a reinforcement of 0 while the rein-
forcement of the still-valued reinforcer stays at 1,000.
After a consumption one trial ends. In the final phase,
both manipulanda are present, no action leads to any
effect, and the selected actions are recorded. 

Environmental situations are coded by four bits.
The first two bits indicate the presence of either type
of reinforcer and the second two bits indicate the pres-
ence of lever or chain. The phases were executed for
204, 100, and 50 trials, which approximately corre-
sponds to the number of trials the rats experienced.
Parameter settings are identical to the ones above and
the curves are again averaged over 1,000 runs.

Figure 10 shows that ACS2 is able to exploit its
environmental model to simulate anticipation-control-
led behavior. Regardless of if mental acting, looka-
head action selection, or both are applied, ACS2
consistently distinguishes the action that leads to the
devalued reinforcer from the still-valued one. The
results show that ACS2 sufficiently generalizes the
model to make the appropriate conclusions.

In addition to the confirmation of the distinction,
several behavioral characteristics can be observed.
Similar to the rats, ACS2 decreases its distinction
between the two actions during testing. In the mental
acting applications with different steps, the distinction

drops off faster. In the testing phase, the quality values
q of the classifiers that specify the provision of one or
the other reinforcer after pulling or pushing decrease
under the reliability threshold since during testing no
action has any effect. Thus, the mental updates no
longer take place and the distinction between the two
actions decreases faster than in the lookahead action
selection case in which anticipations are also formed
with classifiers that are not reliable. In both cases, the
distinction between better and worse action decreases
as observed in the rats. Eventually, ACS2 does not
distinguish between the two actions at all since it
learns that the actions no longer have any effect.
Again, we confirmed the consistent distinction in dif-
ferent parameter settings for ² and θga that always
showed a similar distinction between the two actions.
Thus, although the degree of distinction might be
dependent on parameter settings, the distinction per se
as well as the decrease in the distinction consistently
applies throughout.

5.5 Stimulus–Response–Effect Learning Task

The stimulus–response–effect experiment was con-
ducted with rats by Colwill and Rescorla (1990).
Section 2.1 revealed the basic implications of this
experiment for anticipation-controlled behavior. The
experimental setup is very similar to the 1985 experi-
ment except for the additional requirement of a stimu-
lus distinction. Figure 2 shows the experimental setup

Figure 10 In the simulation of the Colwill and Rescorla (1985) experiment, ACS2 is able to exploit its on-line
generalized environmental model for an adaptive behavior beyond model-free RL and off-line generalizing
model-based RL architectures. Regardless if lookahead action selection or mental acting is applied, ACS2
prefers that action that previously led to the not-devalued outcome.
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schematically. During the first phase, an additional
discriminative stimulus (noise or light) was presented
that altered the response–effect pairing. During the
test phase one or the other discriminative stimulus was
presented at random. Also, the first phase was altered
in that at first either one or the other manipulandum
was present and later both manipulanda were present.
Although with a slightly lower effect, the rats again
preferred the presumably better action during testing,
as shown in Figure 11.

To code the two additional discriminative stimuli,
two bits are added to the previously used coding that
indicate the presence of either the noise or the light
stimulus. Moreover, the first phase is altered in accord-
ance with the rat experiment by executing 64 trials
with either one or the other manipulandum present and
a further 174 with both manipulanda present (the num-
bers again roughly correspond to the number of trials
the rats experienced). The second phase is executed for
100 trials and the test phase for 50 trials.

The behavior of ACS2 during testing is visualized
in Figure 11. Results are averaged over 1,000 experi-
ments and the parameters are set as specified above.
The graphs confirm that ACS2 is able to distinguish
discriminative stimuli, exploit the generalized model,
and consequently adapt its behavior appropriately. In
the results, the lookahead action winner method
results in a much stronger effect than the mental act-

ing application. Due to the additional situational
dependencies, mental acting is not as effective as in
the first experiment since more connections can be
updated.

The results confirm again the efficiency and use-
fulness of the evolving generalized environmental rep-
resentation. Anticipation-influenced behavior is able
to mimic animal behavior, which would not be possi-
ble with previous mechanisms or an ALCS without
processes similar to mental acting or lookahead action
selection. Also the on-line generalization is manda-
tory since otherwise the knowledge transfer from the
devaluation phase to the test phase would not have
been possible at all. Moreover, it shows the necessary
specialization of situational dependencies—the third
point of the anticipatory behavioral control theory. 

Both simulations show that the representation of a
predictive environmental model in combination with
on-line generalization of the model is a prerequisite
for a successful simulation of rat behavior. Moreover,
an additional anticipatory mechanism is necessary that
influences behavior in an anticipatory fashion. In our
simulations the two distinct mechanisms can cause the
same behavioral effect. Whether one, or the other,
both, or a different mechanism might take place in the
rats is certainly not derivable from the results. How-
ever, what can be derived is that some anticipatory
mechanism that influences behavior must be present.

Figure 11 The results in the simulation of the stimulus–response–effect experiment show that ACS2 is able
to further adapt its behavior, differentiating between different stimuli, similar to the differentiation observed in
rats. Again, adaptive behavior beyond model-free RL approaches or off-line generalizing model-based RL
architectures is achieved.

 at University of Wuerzburg 305 on November 8, 2010adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


Butz & Hoffmann Anticipations Control Behavior 93

6 Summary and Conclusions

This article provided evidence for anticipation-con-
trolled behavior from the psychological side in exem-
plar animal and human experiments. Latent learning
in rats suggested learning beyond the basic stimulus–
response assumption in behaviorism long ago. More
recently, various outcome-devaluation experiments
confirmed response–outcome representations in rats.
In humans, anticipations have a definite influence on
response speed. Other experiments were mentioned
providing evidence for anticipatory influences in rea-
soning, learning, attention, and preparedness. 

After the provision of evidence for anticipatory
influences on behavior, we suggested a basic frame-
work of anticipation-controlled behavior. It was sug-
gested that (1) anticipations precede any voluntary
act, (2) primarily action–outcome coincidences are
learned, (3) situational dependencies are learned as a
secondary process, (4) needs or desires of outcomes
trigger action–outcome representations, and (5) cer-
tain stimuli cause the preparedness for action–outcome
relations. The framework is partly realized in the
anticipatory learning classifier system ACS2 whose
performance was evaluated next. The behavioral eval-
uations in different rat experiments confirmed that
anticipatory representations and on-line generalization
are necessary to mimic rat behavior in various experi-
mental setups. Not only was rat behavior mimicked
but also behavior was achieved that is not possible
with model-free reinforcement learning methods nor
with not on-line generalizing model-based reinforce-
ment-learning approaches. That is, a predictive envi-
ronmental model needs to be learned while interacting
with the environment and the model representation
needs to be generalized over the provided sensory
input while interacting with the environment. 

The results allow the following conclusions. (1)
To enable competent adaptive behavior, explicit antic-
ipatory influences on behavior are necessary in certain
tasks. (2) To be able to realize such behavioral influ-
ences, a predictive environmental model needs to be
learned on-line. (3) Learning of such a model should
primarily form action–effect relations that are condi-
tionalized where necessary. (4) The predictive model
representation needs to be generalized on-line over the
provided perceptual input.

In the future, it is necessary to evaluate the scaling
behavior of the additional anticipatory approaches pur-

sued herein. Mental acting might be rather expensive
in larger tasks and also less effective since too many
relations can be updated. Prioritized updates could be
helpful as, for example, pursued in Moore and Atke-
son (1993) or Kaelbling (1993). Salient situations
(such as an unexpected result) could be remembered
that would further direct the internal reinforcement
updates. Lookahead action selection looks only one
step into the future, which could be insufficient in
many cases. Longer chains of lookahead, on the other
hand, cause exponential computational effort. Thus,
other mechanisms seem necessary to speed up the
lookahead possibilities, such as the formation of hier-
archies in the model representation (e.g., Donnart &
Meyer, 1994; Sutton, Precup, & Singh, 1999).

Although ACS2 proved to be a suitable learning
mechanism for the implementation of anticipation-
controlled behavior, many extensions seem possible.
To name a few, ACS2 should be enhanced to be able
to handle stochastic environments. ACS2 should be
able to ignore attributes that are not influenced by its
actions as well as attributes that are irrelevant for its
goals. Essentially, the current goal of ACS2, that is, to
learn a complete predictive model of the environment,
should be relaxed to enable learning in more complex
environments. Furthermore, more particular action-
and task-dependent attentional processes could be
included to improve and speed up behavior. Finally,
the formation of behavioral hierarchies and subpro-
grams could allow further scalability. 

With respect to adaptive behavior in anticipatory
learning systems in general, it seems necessary to use
anticipatory mechanisms for the realization of other
cognitive processes such as attentional processes, pre-
paredness, intentional and motivational mechanisms,
as well as emotions. Anticipations should prove to be
helpful for further competence in adaptive behavior as
the diverse manifestations in animals and humans
indicate. As a final point along this way, it still
remains to be shown in which problems anticipations
are actually necessary for competent adaptive behav-
ior. This article investigated small dynamic environ-
ments in which dynamic changes demanded backward
conclusions. Although the demand for backward con-
clusions seems to be a general indicator for the utility
of anticipations, future research must identify which
dynamic changes demand backward conclusions,
when the demand of backward conclusions actually
requires anticipatory controlled behavior, and if the
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demand for backward conclusions is the only one in
which anticipation-controlled behavior is helpful.

Note

1 The parameters in ACS2 were set to: β = 0.05,  umax = ∞,
γ = 0.95, θga = 10, µ = 0.3, χ = 0.8, θas = 20, θ exp = 20, ² =
0.4. The ACS2 results are averaged over 1,000 experi-
ments. Similar results were obtained with variations in θga

and ², the two most influential parameters in ACS2.
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