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Abstract— Many neural network models of (human) motor
learning focus on the acquisition of direct goal-to-action map-
pings, which results in rather inflexible motor control programs.
We propose a neural network architecture (SUREREACH)
that acquires complete body models through unsupervised
learning. It encodes redundancy on the kinematic and on
the motor command level in order to exert highly flexible,
task-dependent optimal control. This paper shows that our
approach accounts for two forms of effective human behavior
based on exploiting kinematic redundancy. First, depending
on the starting posture, hand targets are pursued in different
ways optimizing movement efficiency. Second, the arm posture
at the end of a movement can be aligned anticipatorily to
facilitate a subsequent movement. A discussion of computational
implications and relations to behavioral and neurophysiological
findings concludes the paper.

I. I NTRODUCTION

Any behaving system needs to be able to control its own
body goal-directedly. This is especially true for animals and
humans, since motor behavior is the only option to interact
with the world. A seemingly very simple form of goal di-
rected behavior is moving ones hand to a particular position,
such as reaching for an object or pointing. Still, reaching
requires that a goal representation, for example the desired
hand position in visual space, is transformed into a series
of motor commands that move the hand swiftly to the goal.
The neural representations of these goal-to-action mappings
are termed internalinverse models [1]. In recent decades,
motor cortical and cerebellar neural network models have
been proposed for the acquisition of such inverse models, e.g.
[2], [3]. They differ in many aspects but have one thing in
common: They gather information during motor learning and
aggregate the information by encoding a single, preferably
optimal action for each potential goal (and each body state).
While this aggregation allows for a compact representation,
it also yields several severe limitations.

First, storing only the best action for pursuing each goal
requires an environment in which the optimal action always
stays the same. However, in most circumstances the optima-
lity criteria, which determine the optimal action, change over
time. For example, sometimes a movement has to be carried
out as quickly as possible, whereas at other times it requires
great accuracy. If the action that was optimal during motor
learning was the only one represented in an internal model,
then movements cannot be adjusted flexibly to changing
optimality criteria. Even worse, if only one action is stored

The authors are with the Department of Cognitive Psychology,University
of Würzburg, Germany, (phone: +49 931 312808; fax: +49 931 312815;
email: oliver.herbort@psychologie.uni-wuerzburg.de).

to pursue a given goal, and this action cannot be carried out
any more, due to, for example, injuries or obstacles, the goal
cannot be at all reached, not even in a suboptimal way.

Several models have shown the benefits of storing multiple
actions. The MOSAIC model is able to quickly adjust to new
dynamical contexts, because an array of different controllers
is trained [3]. The controllers that are most suitable in
the current context can be activated on the fly. However,
no redundant actions within a single context are encoded.
A more radical approach has been taken by theposture
based motion planing theory [4]. It does not rely on trained
goal-to-action mappings, but uses a complete body model
which provides all possible actions and their properties (e.g.
distance to the goal, movement cost). Hence, an action can
be selected that is optimal for the current task. The model
accounts in detail for a wide range of human behavior,
such as grasping or obstacle avoidance. However, the model
is highly abstract and the body model underlying action
generation is not learned, but rather prewired. In conclusion,
these and other approaches [5] show that representing more
than just the optimal action for each goal enables much
higher robustness and flexibility.

Besides this behavioral inflexibility, the storage of gathered
information into one goal-to-action mapping assumes that
all potential goals are already known during motor learning.
In most models, it is assumed that the potential goals are
the different sensory states the organism can perceive. The
learning mechanisms then strives to find for each sensory
state the action that optimally moves the body so that the
respective sensory state is actually perceived. Thus, only
those potential goals are represented that are anticipated
during motor learning. Later on, the controller would ha-
ve difficulties of processing novel, maybe less constrained
goal representations—a capability that would also enhance
behavioral robustness and flexibility. On the one hand, the
possibility to set an underconstrained goal enables the control
of only those aspects of a movement that are relevant for
the task, resulting in behavior that is more efficient and less
prone to noise [6]. On the other hand, controllers like the
MMC model [5] have shown that relying on a prewired
complete kinematic body model instead of a goal-to-action
mapping enables the processing of underconstrained goals.
This capability is especially important for human motor
control because most goals are underconstrained due to
motor redundancy. To summarize, if a complete body model
is available, not only those goals that were anticipated during
motor learning can be processed but also many other more
general goal representations, thus increasing robustnessand



flexibility.
Most neural network models of motor learning and control

aggregate the gathered information compactly in a many-to-
one goal-to-action mapping. This enables a compact goal
representation but makes motor control inflexible and sub-
optimal in an environment that requires the quick adaptation
to novel task demands, often from one movement to another.
However, approaches that rely on a representation of a com-
plete body model are restricted in their learning capabilities
(e.g. [4]). In this paper, we propose a new neural network
model of motor learning and control, called SUREREACH1,
which grounds task-dependent optimal control on a body
model, which is acquired through learning experience [7].

In the following, we briefly describe the neural network
model. Then, two behavioral findings in the domain of
reaching are replicated. First, we show that the final arm
state of a movement toward a specific desired hand location
depends on the initial arm position, thus minimizing mo-
vement costs. Second, we simulate anticipatory behavior in
the sense that the end posture of one movement depends
on the requirements of a subsequent task, if this task is
incorporated into the goal representation. This finding can
hardly be accounted for by other neural network models of
motor learning because it requires an explicit representation
of the redundant solutions of the inverse kinematics. To
our knowledge, this task has not been simulated before. A
final discussion about the implications of the proposed work
concludes the paper.

II. SURE REACH

SUREREACH is a modular hierarchical architecture that
solves the inverse problem of generating a sequence of
motor commands that moves the hand to a desired hand
location. It is divided into two modules that are trained with
unsupervised, associative learning rules.

First, the posture memory (PM) addresses the inverse
kinematics problem. It transforms a hand location into a
set of arm postures that realize the respective hand location.
Second, themotor controller (MC) generates motor comman-
ds that move the arm toward the goal posture set, provided
by PM. Thereby MC is able to generate movements toward
redundant, underconstrained goal specifications. Even more
so, the postures encoded in the goal representation can be
weighted if not all end postures are equally useful outcomes
of the movement. MC consists of several motor-command-
dependent body models, which encode the movements of
the arm in posture space, given a certain motor command is
executed.

Before a movement can be performed, MC prepares a
state-to-action mapping by means ofdynamic programming
based on the learned body models. This mapping provides
suitable motor commands to move a simulated arm from each
possible posture toward the desired hand location and can be
considered an online generated inverse model. The dynamic

1SUREREACH is an acronym for sensorimotor unsupervised redundancy
resolving architecture.

programming approach is also one of the key differences
to previous models. Whereas other models encode a single
inverse model during motor learning, which is used for all
reaching movements later on, SUREREACH generates an
individual inverse model for each newly presented target.
This enables incorporating task dependent constraints and
optimality criteria by adjusting the model used by dynamic
programming to the current task’s demands. For example,
as we have demonstrated elsewhere, SUREREACH avoids
obstacles in hand space, regards novel cost functions, or
controls an arm despite a disabled joint—all without having
been in either of these situations and without the necessity
to relearn [7]. In the following, the applied arm model,
body space representations, and neural network structures
are briefly presented. Figure 1 shows the basic architecture.
A detailed evaluation and discussion of SUREREACH can
be found in [7].

A. Arm Model

To simulate reaching experiments we implemented a mo-
del of a three joint planar arm that roughly approximates the
kinematic features of a human arm that is restricted to the
transverse plane. The lengths of the upper arm, forearm, and
hand werel1 = 32cm, l2 = 25cm and l3 = 18cm, respec-
tively. The shoulder, elbow and wrist joints were allowed to
move within−60◦ ≤ φ1 ≤ 120◦, −160◦ ≤ φ2 ≤ 0◦, and
−80◦ ≤ φ3 ≤ 60◦, respectively. Two antagonistic “muscles”
were attached to each limb. Each muscle was activated by
motor commands ranging between0.0 ≤ mci ≤ 1.0. To
compute the final movement of a jointφi, activation of
antagonistic motor commands was subtracted and the result
was multiplied by a gain factorg = 2.25◦:

φi(t + 1) = φi(t) + g(mc2i−1 −mc2i), i = 1, 2, 3

Albeit this arm model is very simple, it has the critical
property that most hand locations of the arm can be realized
by an infinite number of arm postures.

B. Space Representation

In the architecture, extrinsic hand location space and
intrinsic arm posture space are represented. Hand coordinates
were encoded by a population of neuronsH. Each neuron
hi of H fired if the hand coordinates(x, y) are close enough
to the neuron’s preferred hand location (hx

i ,hy
i ):

hi = max(1.0−
|x− hx

i |

3.0
; 0) ·max(1.0−

|y − h
y
i |

3.0
; 0)

The preferred hand locations were arranged in a51× 26 =
1326 grid with 3cm distance, covering a150cm × 75cm

rectangle, which covered the upper half of the arm’s work
space. The shoulder joint was centered on the lower line of
this rectangle (dashed rectangle in figure 1). Arm postures
were encoded in a similar population of neuronsP , where
each neuronpi was activated according to the following
equation:

pi =

3∏

j=1

max(1.0−
|φj − p

φj

i |

20.0◦
; 0),



wherep
φj

i are the preferred joint angles of each neuronpi,
which were arranged in a10 × 9 × 8 = 720 grid covering
the entire posture space. The distance between two adjacent
neurons was20◦. Hence, in both representations only a few
neurons were active at the same time, indicating the current
location of the hand or the current arm posture.
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Fig. 1. If an external target appears, it is transformed into adesired
hand locationHgoal. The posture memory converts it into a redundant
goal representation in posture spacePgoal. Starting fromPgoal the motor
controller propagates neural activation through the neuron layersAi based
on the recurrent neural connectionsWi and lateral interconnections. The
differences in the neuron layer activitiesAi are then used to generate motor
commands based on the current postureP , resulting in effective closed
loop control of the three joint arm. The dashed rectangle shows the area of
external hand space that can be encoded. The dotted arrows show the effect
of the motor commands and the slices at each joint show the reachable joint
angles.

C. Posture Memory

The posture memory (PM) was implemented by a fully
connected single layer neural network which maps from
extrinsic hand space to intrinsic posture space by means of
a 1326 × 720 weight matrixWPM . During motor learning,
in each time step of the simulation the current hand (H) and
arm state (P ) were associated by Hebbian learning:

WPM (t) = WPM (t− 1) + ǫPHT ,

whereǫ = 0.001 is the learning rate. To obtainall the arm
postures that were associated with a single hand location

during learning, a desired hand locationHgoal was fed into
the network:

Pgoal = WPM ×Hgoal.

The output activationPgoal then represents the redundant
arm postures that are suitable to move to the desired hand
location. This set of postures is further processed by the
motor controller.

D. Motor Controller

The motor controller (MC) extracts complete body models
from movements made in a motor babbling phase, during
which random motor commands were executed. This infor-
mation was encoded motor-command-dependently inn =
6 recurrent interconnected neural networks. Each network
was associated to a certain motor command and stored the
transitions in posture space that occurred if the respective
motor command was executed. This information was then
used to generate posture-to-action mappings dynamically if
a new target is presented.

1) Motor Learning: Each of the six neural networks
consisted of a single layer of interconnected neuronsAi.
The neuron layersAi had the same size as the posture
representationP and thus consisted of 720 neurons each.
Each neuron in a layer was connected to itself and all
other neurons of the same layer by a720 × 720 synaptic
weight matrixWi. During learning, neural layersAi had the
following dynamics:

Ai(t) = ρAi(t− 1) + mci(t− 1)P (t− 1),

where P is a representation of the arm posture,ρ is a
decay coefficient that enabled the learning of temporally far
reaching posture transitions by maintaining a trace of past
posture representations, andmci is the activation of the i-
th motor command during learning. Neural network weights
were updated according to a the following associative lear-
ning rule:

w
jk
i (t) = w

jk
i (t− 1) + δa

j
i (t)p

k(t)(θ − w
jk
i (t− 1)),

where w
jk
i , a

j
i , and pk are single values of the weight

matrices, neuron layers and the representation of the current
posture, respectively,δ is the learning rate that exponentially
decreased fromδ0 = 0.1 to δ1,000,000 = 0.01 during learning,
and θ = 0.1 is a ceiling value that prevented weights from
increasing infinitely. The motor babbling phase in which
MC and PM were trained lasted for 1,000,000 time steps.
Thereby, in random intervals of 1 to 8 time steps, a new set
of motor commands was generated by setting each motor
command to1.0 with a probability ofp = 0.3 and to0.0
otherwise. This procedure was repeated until at least one
motor command was set to1.0.

2) Dynamic Programming: When MC is used for con-
trol, a posture-to-action mapping is prepared by dynamic
programming that associates a set of motor commands to
each possible arm state. Once this mapping is built it is used
to direct the arm by means of closed loop control to the
goal. The dynamic programming is based on the connectivity



between the different neurons of a neural network (Wi)
and interconnections between the neurons in different neural
networks associated to the same posture. In each time step,
the activity levelsAi of the neurons were updated by the
following equations:

A∗
i ← max{β(γ

∑j 6=i

j Aj

n− 1
+ (1− γ)Ai), Pgoal}

Ai ← A∗
i + Wi ×A∗

i ,

where n is the number of neural networks,max returns
the entry-wise maximum of two vectors,β = 0.17 reduces
neural activity,γ = 0.43 specifies the intensity of crosstalk
between networks, andPgoal is the representation of suitable
goal postures normalized so that single values add up to
1.0. The activation of the goal representation is constantly
injected into the neural networks (max operator). Activities
in the neural networks spread out from this goal activation,
resulting in a stable state which yields different activity
patterns in different networks. Due to the acquired body
model encoded in the synaptic weights, activation is propaga-
ted preferably to those neurons that represent postures from
which the goal can be easily reached, if the motor command
associated to the respective neural network is executed. Thus,
it is possible to determine which motor command is suited
best to pursue the current goal from the current arm state by
comparing the activation levels in neurons that encode the
current posture and approach the goal by means of closed
loop control. This was computed by the following equations:

mc∗i = PT Ai,

mci =
max(mc∗i −mc∗

anta(i); 0)
∑

i=1...6 max(mc∗i −mc∗
anta(i); 0)

,

whereP is the current posture, andmcanta(i) is the antago-
nistic motor command tomci. This resulted in a normalized
set of motor commands that moved the arm for2.25◦ in
posture space (d1-norm).

III. T WO BEHAVIORAL FINDINGS

In this section, we report simulated behavioral data from
psychological experiments with SUREREACH. First, by
default, stored kinematic redundancy is exploited to move to
a goal as quickly as possible. We show that, depending on
the start position, movements to the same hand location end
with different postures. Second, by interaction between MC
and PM, the model is able to acquire a goal with a posture
that facilitates the execution of a subsequent movement.

A. Start Posture Dependency

If humans are instructed to move the hand to a specific
location the final arm posture of the movement depends
on the initial arm posture. This posture dependency enables
humans to exploit the kinematic redundancy of their arms
to exert more efficient movements [8], [9]. To evaluate if
SUREREACH can account for this finding, 10 controllers
were independently trained. After learning, each controller
had to move to 25 random goal locations. Each goal was

C

D

A E

FB
S

S S

S

Via

Via Via

ViaS2

S1

T1

T2

T1

T2T

T

Fig. 2. A, B) Movements starting from different locations (S1,S2) to the
same target (T) result in different end postures. C-F) The endpostures of
movements from identical start postures (S) to identical targets (Via) can be
adjusted so that good starting positions for movements to subsequent targets
(T1,T2) are assumed.

pursued starting from two randomly selected arm postures.
A movement was allowed to take maximally 100 time steps.
In sum, 500 movements to 250 different hand goals were
performed. Of the 500 movements,94.8% reached a position
within a 3cm radius around the target within38.8(SD =
19.5) time steps on average. The remaining5.2% movements
had an average error of6.65cm(SD = 3.77cm) in hand
space.

To determine if the end posture of a movement depends on
the starting posture, the difference between the final postures
(after 100 time steps) were computed (d2-norm) for each pair
of movements. On average, postures differed by39.2◦(SD =
48.5◦). Figure 2A,B shows an example. To assure that this
optimizes control, because end postures are close to initial
postures, the following efficiency measure was computed for
each pair:

E = ∆Φ1,2 + ∆Φ2,1 −∆Φ1,1 −∆Φ2,2,

where the∆Φi,f are the posture differences between the
initial posture of the movement with the index (i) and
the final posture of the movement with the index (f ). If
movement end postures are not particularly close to initial
postures, the posture differences in actually made movements
(∆Φ1,1, ∆Φ2,2) should not differ systematically from posture
differences between the start posture of one movement and
the end posture of another (∆Φ1,2, ∆Φ2,1). E should thus
be close to0.0. However,E is positive if the transitions of
actually made movements are shorter than the transitions of
the ‘virtual’ movements. The average E for each controller
was computed and compared to0.0 with a t-test, which
revealed a significant positive value(E = 27.1◦, SD =
9.60◦, t(9) = 8.91, p > 0.001). The results show that,
as in humans, end postures of movements to the same
hand location depend on the starting posture in a way that
optimizes movement efficiency.

B. Anticipatory Posture Selection

Most movements in every day life are part of a larger
sequence. For example, grasping a cup is often followed
by moving the cup to the mouth. Hence, in movement
sequences, motor redundancy should be exploited in a way so
that the outcome of one movement is a good starting point for
the subsequent one. Indeed, this has been shown in numerous



experiments. For example, data from humans that had to
sequentially reach different hand targets clearly revealed that
the arm posture at an intermediate target location depends
on the subsequent target [8].

Computational models of motor learning and control that
do not encode redundant solutions for the inverse kinematics
problem are unlikely to account for this finding. In SU-
RE REACH, the redundant postures that are represented for
each hand target can be weighted, dependent on their utility
to reach the next goal. This was simulated by a two step
process involving both PM and MC. First, activation maps
for moving to the second of two targets were generated for
25 time steps without actually moving the arm. Second, this
activation was combined with a goal representation for the
first target (Pgoal) to generate a target representation (P ∗

goal)
for the first movement, that incorporates demands for the
second movement.

p
∗j
goal = p

j
goal × (10−α + max(aj

i,0≤i≤n)) (1)

where p
∗j
goal are the components ofP ∗

goal and p
j
goal are

the components ofPgoal, and α is a weighting parameter
that determines the amount to which the compound target
representation is influenced by the subsequent target. The
largerα, the higher the influence of the second target. Theaj

are the components of the activation mapsAi, which indicate
the closeness of the associated posture to the subsequent
target, assuming that the i-th motor command is activated.
Thus, the largestai indicates closeness, assuming that the
optimal motor command is activated.

The anticipatory capabilities of the controller were tested
with the ten independent controllers mentioned in the pre-
vious section. Each controller had to perform 50 sets of
movements. A set consisted of four movements to random
locationsV ia, T1, andT2: (1) a movement from a starting
posture S to a via targetV ia anticipating a subsequent target
T1, (2) a subsequent movement toT1, (3) a movement from
S to V ia anticipatingT2, and (4) the subsequent movement
to T2. Thereby the goal representation for movements to the
via target (1,3) were determined by equation 1. Figure 2C-F
shows example movements (α = 6.0). Each of the movement
sets was simulated with four different settings ofα (α =
3, 4, 5, 6) and a control setting, in which movements to the
via target were carried out independently of the subsequent
goal. The hand location at S and the targetsT1, T2, andV ia

were separated by at least 20cm from each other.
For each controller and each of the four settings ofα, the

average difference between end postures of movements to the
same via location but with different anticipated subsequent
targets (1,3) was computed (d2-norm) to determine howα

affects the dependency of a movement’s end posture on a
subsequent task. In the control setting the postures at the via
location did not depend on a subsequent target. Figure 3A
shows that increasing impact of the anticipated goal increases
the posture difference at the via location as well. A one-
way ANOVA revealed a significant effect ofα (F (3, 36) =
70.2, p < 0.001).

0

2

4

6

8

10

12

d
e
c
re

a
s
e
 o

f 
re

m
a
in

in
g
 t
ra

n
s
it
io

n

(d
e
g
re

e
s
)

3 4 5 6

impact of anticipated target (w)

0,84 3,07 5,43 8,16

0

1

2

3

4

5

6

d
e
c
re

a
s
e
 o

f 
m

o
v
e
m

e
n
t 
d
u
ra

ti
o
n

(t
im

e
 s

te
p
s
)

3 4 5 6

0,39 1,46 2,70 4,05

0

5

10

15

20

25

30

35

40

p
o
s
tu

re
 d

if
fe

re
n
c
e
 (

d
e
g
re

e
s
)

3 4 5 6

6,51 14,09 21,34 27,71

A B C

Fig. 3. A goal representation in SUREREACH can be adjusted to
facilitate an anticipated subsequent movement. A) The more thegoal of
a subsequent movement is incorporated (α) into a goal representation,
the more different the end postures of movements to the same location,
given different subsequent targets. The difference between B), the required
transition in posture space, and C), the duration between movements that
independently followed another movement and movements that have been
anticipated in the goal representation of the preceding movement, increase
with increasingα. Error bars show standard deviations of the average
performances of ten individually trained controllers.

To assess if this effect was accompanied by an increase in
efficiency we further analyzed two performance measures for
movements (2) and (4): the joint angle transitions (d2-norm)
made during the movement and its duration2. We compared
the performance of movements in the anticipatory conditions
to those in the control condition by subtracting the former
from the latter. Positive values indicate lower joint angle
transitions and faster movement times compared to control
movements. Figures 3B, C show that the efficiency of move-
ments (2) and (4) increase if the goals of these movements
are more strongly incorporated in the goal representations
of the preceding movements. One-way ANOVAs revealed a
significant impact ofα on the remaining joint angle transition
(F (3, 36) = 108, p < 0.001) and on movement duration
(F (3, 36) = 127, p < 0.001).

The simulated experiments show that SUREREACH ex-
ploits kinematic redundancy to incorporate demands of the
subsequent task in its goal representation. By doing so,
the subsequent movement can be carried out faster because
it starts from an advantageous posture. The suitability of
a posture to serve as starting posture for a movement to
a particular hand target is provided by the sensorimotor
grounded distance measures in the motor controller. Similar
behavior in humans has been found in reaching tasks [8] but
also in other domains like bimanual object manipulation [10]
or speech production [11]. Additionally, the more complex
movement preparation process is in line with experimental
findings, which show an increase in preparation time for
the initiation of the first movement of a sequence of aiming
movements [12]. In conclusion, the availability of redundant
postures provides the flexibility to align movements to the
demands of future tasks.

2The movement duration was considered the time between the onsetof a
target and the number of time steps required to move to an area within 5cm
of the target. Movement sets were excluded from the computation of the
movement duration if at least one movement didn’t reach the 5cm criteria
(6.0%) to obtain valid results.



IV. D ISCUSSION

We outlined an unsupervised learning architecture for goal
directed behavior that grounds behavioral flexibility on lear-
ned body models. Unlike many accounts for motor learning
that lack behavioral flexibility due to highly aggregated
goal-to-action mappings, SUREREACH strives to develop
complete kinematic and sensorimotor models. It extends
previous models that account for the readily incorporation
of task-specific constraints and optimality criteria by learning
the necessary body models from sensorimotor interaction.

In the introduction, we criticized the goal-to-action map-
ping approach due to its incapability to encode redundant
actions and cope with novel goal representations. The simu-
lations reveal that SUREREACH can use both to enhance
control performance. The posture memory (PM) provides
many redundant postures for each desired hand location.
These redundant, possibly weighted, goal representations
can be processed by the motor controller (MC), even if
these representations were never used during learning. The
simulations confirmed that SUREREACH exploits the en-
coded kinematic redundancy by default to generate short
efficient movements. Moreover, the explicit representation
of redundancy enables the model to adjust the final posture
of a movement in a way that facilitates the execution of a
subsequent movement, if this is required by the current task.

In contrast to many other models, SUREREACH relies on
an unsupervised learning scheme that connects neurons that
encode different body configurations. This is very appealing
from a computational and neuroscientific point of view. On
the one side, body states or movement plans are likewise
represented by populations of neurons in different motor
areas [13]. Theoretical considerations suggest that this form
of representation is not only robust but enables advanced
information processing [14]. On the other side, associative
learning mechanisms were substantiated in motor-cortical
areas [15]. Furthermore, a problem of error-based motor lear-
ning approaches is avoided because associative learning does
not require the transformation of an externally represented
error signal into an error signal in motor command space.

The reported simulations clearly show that the represen-
tation of complete kinematic and sensorimotor body models
enables the quick adaptation to novel tasks and optimality
criteria. Whereas striving to encode redundancy may be very
economic in the sense that most of what is experienced is
also retrievable, it requires far more complex neural networks
to encode the body models and to generate motor commands
task-dependently than neural networks that encode a direct
goal-to-action mapping. Hence, to apply this architecture
to control a body with many more degrees of freedom,
the learning mechanisms and body representations have to
be refined. First, many independent low dimensional body
models could be stored in a modular architecture, separating,
for example, arm, hand, and finger representations. Second,
the now hard-wired population encoding could be improved
by self-organizing maps that optimally cover the relevant
work space. Third, local learning rules and sparse neural

networks could replace the now fully connected neural
networks. By including these enhancements we are confident
that SUREREACH will be able to control more complex and
dynamic bodies.

In conclusion, learning mechanisms that encode only a
single goal-to-action mapping are too restricted to account
for the high flexibility in human motor behavior. Although
it is not yet sufficiently well understood how the brain
adjusts motor control from one moment to the next matching
different task requirements, the presented neural network
architecture suggests one possible solution by encoding red-
undancy and resolving redundancy task-constrained on the
fly.
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