
Learning to Select Targets within Targets in Reaching Tasks

Oliver Herbort1, Dimitri Ognibene2, Martin V. Butz1, Gianluca Baldassarre2

1University of Würzburg, Roentgenring 11, 97070 Würzburg, Germany
2Istituto di Scienze e Tecnologie della Cognizione - CNR, Via S.M. della Battaglia 44, 00185 Roma, Italy
[oliver.herbort, butz]@psychologie.uni-wuerzburg.de, [dimitri.ognibene, gianluca.baldassarre]@istc.cnr.it

Abstract— We present a developmental neural network model
of motor learning and control, called RL SURE REACH.
In a childhood phase, a motor controller for goal directed
reaching movements with a redundant arm develops unsuper-
vised. In subsequent task-specific learning phases, the neural
network acquires goal-modulation skills. These skills enable
RL SURE REACH to master a task that was used in a
psychological experiment by Trommershäuser, Maloney, and
Landy (2003). This task required participants to select aimpoints
within targets that maximize the likelihood of hitting a rewarded
target and minimizes the likelihood of accidentally hitting
an adjacent penalty area. The neural network acquires the
necessary skills by means of a reinforcement learning based
modulation of the mapping from visual representations to the
target representation of the motor controller. This mechanism
enables the model to closely replicate the data from the original
experiment. In conclusion, the effectiveness of learned actions
can be significantly enhanced by fine-tuning action selection
based on the combination of information about the statistical
properties of the motor system with different environmental
payoff scenarios.

Index Terms— Motor Learning, Motor Control, Noise, Re-
dundancy, Optimal Control

I. INTRODUCTION

Our world confronts us with an abundance of potential
targets that we can reach or interact with in some way.
Much research has been conducted to understand the neural
mechanisms that enable the selection of single objects and
suitable actions to manipulate them [1]. This research mainly
focuses on the selection of a discrete target among few
visually distinguishable ones and on the precision of the
execution of the consequent action (cf. [2]).

However, after a target has been selected, there are re-
dundant ways to implement the related reaching action in
that the system has still to establish (1) where exactly and
(2) how exactly to approach the target. The former problem
may be termed a location redundancy problem: almost all
targets can be reached assuming different final hand-contact
points. For example, movements to grasp a pen can terminate
at different locations along the pen’s long axis without
substantially different outcomes. The latter problem is often
referred to as the motor redundancy problem. It arises, for
example, because each hand position in extrinsic space can be
realized by different arm postures and one can move to each
arm posture with an abundance of different arm trajectories.
Since the motor system can only realize one possibility

at a time, it has to decide between seemingly equivalent
alternatives. Regardless of which type of redundancy applies,
a fundamental challenge for a motor control system is to
choose those means that accomplish a task most reliably and
efficiently.

In the motor control literature optimal control describes
ways to cope with redundancy [3]. If redundant possibilities
are at hand to accomplish a task, additional criteria may be
considered to choose the currently optimal actions. Recently,
optimality criteria have been proposed that lead the motor
system to maximize movement accuracy by reducing the
impact of motor noise [4], [5]. Most models focus on the
resolution of motor redundancy. However, also the resolu-
tion of location redundancy is important to optimize action
outcomes. Recent psychological experiments revealed that
humans consider motor noise and different penalty situations
when choosing movement aimpoints within target areas (cf.
[6]). In these experiments, a target area was touched at
locations shifted away from an adjacent area if hitting the
adjacent area was both likely and strongly penalized.

Here, we present a developmental computational model
of unsupervised motor learning and the acquisition of task-
specific reaching skills in an experimental context. The devel-
opment of the motor control system is modeled by the Sen-
sorimotor Unsupervised Redundancy Resolving Architecture
(SURE REACH) [7], [8]. This neural network architecture
is capable of solving the inverse problem of generating a
sequence of motor commands to move a redundant arm
to goal locations encoded in an extrinsic coordinate frame.
SURE REACH is enhanced by a neural population-coded
reinforcement-learning model, which generates optimal target
representations for maintaining a high level of performance
despite system-inherent neural and motor noise [9]. We
refer to the enhanced architecture as RL SURE REACH. We
used RL SURE REACH to simulated the above mentioned
reaching task [6]. As shown in detail below, the architecture
successfully reproduces the tendency of humans to adjust
movement endpoints dependent on the distance and severity
of a penalty area. In the remainder, Section II and III describe
the computational model, the original experiments and its
simulation, Section IV presents the simulation results, and
Section V draws conclusions.

II. THE MODEL

Fig. 1 shows the four main components of the model. (1)
A model of the human motor apparatus and the experimental
setup receives motor commands and provides the proprio-
ception of current joint angles, visual information about the
hand position and target locations in extrinsic space, and
overall reward values to the neural controller. (2) A motor
controller (MC) generates step-by-step motor commands to
move the arm toward target postures (ptarget). MC is trained
by unsupervised associative learning in an initial “childhood”
learning phase, during which random motor commands are
executed and their effect on joint postures are encoded.
Later on, this information is used in an inverse fashion
to map from (desired) arm postures to motor commands.
(3) As the task requires movements to targets represented
in an extrinsic coordinate frame, a posture memory (PM)
converts an extrinsically encoded hand target (htarget) into a
representation of the redundant arm postures that correspond
to it. The output of PM is used as the target representation
for MC. Like MC, PM develops in an unsupervised fashion
during the childhood learning phase. (4) Finally, an actor-
critic reinforcement learning (RL) mechanism [10] modulates
the retinal input (i) before it is used as target representation
for MC. During task specific learning phases in the simulation
of the experiment, RL explores the consequences of the
selection of varying target representations. It crystallizes on
a mapping of retinal to target representations that, given the
configuration of the reward/penalty areas as well as neural
and motor noise, maximizes the overall payoff.

A. Arm Model

The model of a three joint planar arm roughly approxi-
mates the kinematic features of a human arm that is restricted
to move on the horizontal plane. The lengths of the upper
arm, forearm, and hand are l1 = 30cm, l2 = 25cm, and
l3 = 20cm, respectively. The shoulder, elbow, and wrist
joints are allowed to move within −45◦ ≤ φ1 ≤ 135◦,
−140◦ ≤ φ2 ≤ 0◦, and −70◦ ≤ φ3 ≤ 70◦, respectively.
Each limb is actuated by two antagonistic “muscles” each
of which is activated by motor commands ranging between
0.0 ≤ mci ≤ 1.0. The final movement of a joint φi is
determined by subtracting antagonistic motor commands and
scaling the result by a gain factor g = σ2.25◦, where σ is a
Gaussian distributed random value (m = 1, SD = 0.05):

φi(t + 1) = φi(t) + g(mc2i−1 −mc2i), i = 1, 2, 3 (1)

B. Space Representation

In the architecture, extrinsic visual space (2D), extrinsic
hand location space (2D), and intrinsic arm posture space
(3D) are represented. Visual stimuli are realized by colored
dots (red, green or blue). The dots are used to activate the

f1

f2

f3

h h, target

posture ()p

hand

space

start reward area
penalty area

touch
screen

posture

space

posture memory (PM)

reinforcement learner (RL)

p target

I retina

reward (R)

closed-loop controller: motor commands

motor controller (MC)

a
1

... W
6

W
2

W
1

a
2

a 6

visual input

Fig. 1. The simulated experimental task requires fast arm movements from a
start location to a rewarded target on the screen while avoiding an adjacent
penalty area. The retinal representation of the visual configuration of the
stimuli (i) is used by a reinforcement-learning component (RL) to select a
hand target (htarget) that is then passed to a posture memory (PM). PM
expands the hand target representation to a representation of the redundant
associated arm postures (ptarget), which is used by the motor controller
(MC) to generate motor commands. PM and MC are acquired unsupervised
in a childhood phase, whereas RL learns to fine-tune motor control in task-
specific experimental learning phases.

system’s three color retinas, each formed by 20×20 neurons,
similarly to the encoding of hand coordinates illustrated
below (the activation of the three retinas is denoted by a
vector i with 20 × 20 × 3 elements). Hand coordinates are
encoded in a population of neurons h. Each neuron hi of h

fires, if the actual hand coordinates (x, y) are close enough
to the neuron’s preferred hand location (hx

i ,hy
i):

hi = max(1.0−
|x− hx

i |

3.0
; 0) ·max(1.0−

|y − hy
i |

3.0
; 0) (2)

The preferred hand locations covered a task relevant 40cm×
15cm rectangle (top left at 25cm,−7.5cm relative to shoul-
der, Fig. 1) forming a 20 × 20 = 400 node grid. Likewise,
arm postures are encoded in a population of neurons p, where
each neuron pi is activated according to:

pi =

3∏
j=1

max(1.0−
|φk − pk

j |

23◦
; 0) (3)

where pk
j are the preferred joint angles of each neuron, which

cover the entire posture space with a 9× 7× 7 = 441 node

grid, and φk is the k-th angle of the current posture.

C. Motor Controller

The motor controller (MC) develops six internal motor-
command-specific arm models during the childhood learning
phase. Later on, the MC can use these models to issue
commands to the arm to reach desired postures, on the basis
of neurally implemented dynamic programming.

1) Motor Learning: In the initial motor learning phase
MC and PM are trained for 1,000,000 time steps. Initially,
a random set of motor commands is generated by setting
each motor command (mc′k in Equation 9) to 1.0 with a
probability of pmc = 0.3 and to 0.0 otherwise. This procedure
is repeated until at least one motor command is set to 1.0. A
new random set of motor commands is generated in random
intervals of 1 to 8 time steps, resulting in random arm
movements. During this training, the touch screen used in
the experimental setup was not present and no reward was
provided to the system.

The postural transitions caused by each motor command
are encoded in recurrently interconnected neural networks
resulting in n = 6 motor-command-specific internal models.
Each of the six neural networks consists of a single layer
of 441 interconnected neurons whose activation is denoted
by the vector ak, isomorphic to the neural population code
of the posture (p). Each neuron in a layer is connected to
itself and all other neurons of the same layer by a 441×441
synaptic weight matrix Wk. During learning, the neurons’
activation vector ak has the following dynamics:

ak(t) = ρak(t− 1) + mc′k(t− 1)p(t− 1) (4)

where ρ is a decay coefficient that enables the learning
of temporally far reaching posture transitions in that it
maintains a trace of past posture representations, and mc′k

is the activation of the k-th motor command. Neural network
weights are updated on the basis of a Hebbian learning rule
that associates the current posture p to the preceding, action
dependently encoded postures in ak, thus linking to each
potential target posture those postures from which the target
can be reached if the k-th motor command is executed:

wk
ji(t) = wk

ji(t− 1) + δak
j (t)pi(t)(θ − wk

ji(t− 1)) (5)

where wk
ji are single values of the weight matrix W k, ak

j and
pi are single values of the neuron vectors ak and p, δ is the
learning rate, which decreases exponentially from δ0 = 0.1
to δ1,000,000 = 0.01 during learning, and θ = 0.1 is a ceiling
value that prevents weights from increasing infinitely.

2) Dynamic Programming: Unlike many other motor con-
trol models (e.g., [11]), SURE REACH does not acquire a
specific inverse sensorimotor model that maps perceived and
desired arm postures directly to motor commands during
learning but generates such a mapping on the fly for each

goal-directed movement. As soon as a hand target represen-
tation is provided, dynamic programming builds a mapping
from postures to motor commands that are well-suited to
reach the target from the respective posture. This target-
specific inverse model is then used to direct the arm to the
goal by closed-loop control. This dynamic process enhances
the model’s flexibility and enables it to incorporate novel
task constraints without relearning [7], [8]. The dynamic
programming process is based on the connectivity between
the different neurons of each neural network (Wk) and
also on constant interconnections assumed to exist between
neurons with identical receptive fields in different neural
networks. In particular, at each time step the activity level
ak of neurons is updated as follows:

a′k ← max

[
β

(
γ

∑l �=k

l al

n− 1
+ (1 − γ)ak

)
,ptarget

]
(6)

ak ← a′k + Wk × a′k (7)

where max returns the entry-wise maxima of two vectors,
β = 0.17 regulates overall neural activity, γ = 0.43 regulates
the intensity of crosstalk between networks, and ptarget is the
representation of suitable target postures, which is normalized
so that single values add up to 1.0. The rationale of this for-
mula is that once a target posture representation is provided to
MC, a target activation is injected into all six neural networks.
The activation ak then spreads to the neighboring neurons
through the lateral connections (Wk). The activations ak

spread in the opposite direction of the successive activations
experienced during the childhood learning phase. This activa-
tion diffusion results in different activity patterns in different
networks. Activities ak propagate action-dependently in the
networks to those neurons that represent postures from which
the target postures can be reached using the associated action.
The activities also partially diffuse to corresponding loci of
other networks through inter-network connections assumed
to have constant weights equal to γ/(n− 1).

Given these network activations, motor commands are
generated by comparing the activation levels of the neurons
in the different networks that encode the current posture p:

mc′k = pT ak (8)

mck =
max[mc′k −mc′anta(k); 0]∑6
l=1 max[mc′l −mc′anta(l); 0]

(9)

where mcanta(k) is the antagonistic motor command to mck.
This results in a normalized set of motor commands that
moves the arm 2.25◦ in posture space (1-norm). By iteratively
determining motor commands and executing them the current
posture gradually changes and the goal is pursued smoothly.

D. Posture Memory

The PM is modeled by a fully connected single layer
neural network which maps from extrinsic hand space to

intrinsic arm posture space by a 400 × 441 weight matrix
WPM . At each time step during childhood motor learning,
the current hand position (vector h) and corresponding arm
posture (vector p) are associated with a Hebbian learning
rule:

WPM (t) = WPM (t− 1) + εphT , (10)

where ε = 0.001 is a learning rate. This procedure results in
a neural network that connects each reachable hand location
to all the redundant arm postures that correspond to it. A
representation of redundant arm postures (ptarget) from a
given hand target (htarget) is retrieved by feeding htarget

into the network:

ptarget = WPM × htarget (11)

The representation ptarget of redundant postures so obtained
is then sent as input to MC where it is used to generate motor
commands, as described above.

E. Reinforcement Learner

The RL component is a neural implementation of the actor-
critic model [10], modified to take into account the population
code of actions (see [9] for details). The actor is a two-
layer feed-forward neural network that takes as input the
retinas’ activations i and has as output a layer of 20 × 20
sigmoid “vote” neurons (vector v). These neurons have
topological one-to-one connections with a layer of 20 × 20
leaky neurons, l having lateral excitatory connections with
neighboring neurons and inhibitory connections with distant
neurons. This connectivity and the neurons’ leak imply that
they engage in a many-winner-take-all competition based on
the votes v. This leads to the emergence of a unique “hill”
of active neurons within l. When any leaky neuron reaches
an activation threshold of 2.0 the activation of the whole
map l is passed to PM as input (details on the dynamics
and parameters of the leaky neurons can be found in [9]).
The critic network has the same input as the actor and a
linear output unit. This unit assigns scalar evaluations e(t)
to perceived states i and uses pairs of successive evaluations
together with the overall reward r(t) to compute the surprise
s(t) (cf. [10]; ω is a discount factor set to 0.3):

s(t) = (r(t) + ωe(t))− e(t− 1). (12)

The surprise is used to train both the actor and evaluator
each time the system accomplishes a reaching movement.
The evaluator’s weight vector we is trained on the basis of
the temporal difference learning rule [10] (η is a learning rate
set to 0.6):

we(t) = we(t− 1) + ηs(t)i(t). (13)

The actor’s weight vector wa is trained with the following
supervised learning rule:

wa(t) = wa(t− 1) + η s (l . ∗ (v . ∗ (1− v)))iT (14)

where .* is the vector point product and v. ∗ (1 − v) is the
vector of derivatives of the vote sigmoidal neurons. This
formula implies that, in correspondence to active neurons
l, votes v are increased or decreased when surprise is
respectively positive or negative (see [9] for details). To give
RL a bias to select targets corresponding to visible objects,
the weights of connections between the three color retinas
neurons and the topologically corresponding vote neurons
were initially set to 1.0 whereas those of non-topologically
corresponding neurons were set to 0.0.

III. EXPERIMENTAL SETUP

The following section describes the original experiment
by Julia Trommershäuser and her colleagues [6] and its
simulation with RL SURE REACH.

A. Original Experiment

In the original experiment, participants had to quickly
touch a green circular target area (1.8cm in diameter) on a
touch screen monitor. A hit of the target was rewarded with
100 points. A red circular penalty area (1.8cm in diameter)
was displayed adjacent to or partially overlapping with the
target. Hitting the red area was penalized by a loss of a certain
amount of points. Two crucial parameters in the experimental
setup were varied. First, the distance between the centers of
the target and the penalty area could be ±1.8cm, ±1.35cm,
or ±0.9cm, Second, the penalty for hitting the red area was
either nonexistent (0 points), low (-100 points), or high (-500
points). Rewards and penalties where summed up in case of
hits on overlapping areas.

During the tests, the coordinates of the hits on the touch
screen were recorded to evaluate if the participants adjusted
their movement strategy to the different pay-off scenarios.
The results clearly show that average final movement posi-
tions were only close to the center of the target area if the
penalty area was either distant or had no effect (0 points).
Otherwise, the average final movement position was shifted
away from the penalty area. The strongest shift occurs if
both areas were highly overlapping and if the loss associated
with the penalty area was high (-500 points). The authors
concluded that the participants took into account knowledge
of motor variability to select aimpoints within the target
area that reduced the probability of accidentally hitting the
penalty area even if this somewhat reduced the probability
of receiving a reward. In doing so, the participants were able
to maximize their overall reward.

B. Simulated Experiment

These experiments were simulated with the setup depicted
in the lower part of Fig. 1. The simulated touch screen was
placed 55cm in front of the simulated participant’s shoulder.
The red and green areas were displayed slightly behind the
screen (2.5cm) to ensure that most movements actually hit
the screen. Both targets were realized as 1.8cm long rows

of five equidistant red or green dots. The distances between
targets were equal to those of the original experiments. The
red dots were activated at 5% of the intensity of the green dots
(activated with 1) to incorporate in RL the initial participants’
knowledge that only green targets had to be hit. The rewards
and penalties equal to {100, 0,−100,−500} points were
normalized to {0.2, 0.0,−0.2,−1.0} before being sent to the
system.

A trial began with the presentation of a white dot at the
starting position, located at (30cm,0cm) to the right of the
shoulder joint, making RL SURE REACH move the hand
there. As soon as a movement ended within 5cm of the
starting location, the target area and the penalty area were dis-
played. RL SURE REACH processed the visual information
and executed a movement toward the screen. If the movement
ended on the screen the overall reward was calculated and
provided to RL. A penalty of −1 incurred if the movement
failed to reach the screen. After reinforcement the next trial
began with the display of the starting location. A movement
was considered completed as soon as the hand touched the
screen or did not move out of a 3cm×3cm area for 50 time
steps. Nine independent runs with different target locations
(y-coordinate:−0.88cm,−0.66cm, ..., 0.88cm relative to the
shoulder joint) were simulated for the three penalty times six
distance conditions, summing up to 162 total runs. Each run
consisted of 500 movements to the screen.

IV. RESULTS

To compare the simulation data with the original results,
the distance of the hand positions relative to the center of the
target (relative endpoint) was recorded. In particular, each
simulated run was split into 10 blocks of 50 movements
and the relative endpoint was averaged for each block.
Movements that did not touch the screen were not included in
the analysis (1.3%). In 5 of the 162 runs the reinforcement
learner was unable to modulate the visual target represen-
tation in a way that ensured an average positive reward in
the final 50 movements (4 runs with a penalty of −1 and a
distance of −0.9cm and one run for a penalty of −1 and a
distance of 0.9cm). These runs were also excluded from the
analysis. Fig. 2 shows a summary of the average relative
endpoints in the different conditions. The results clearly
replicate those of Trommershäuser et al. [6]. In particular,
they show that if the distance between the penalty area and
the target area is small, the average end position is shifted
away from the penalty area. This effect is stronger for the
high penalty condition and absent if no penalty is delivered.

For the statistical analysis, we combined the data of
runs with the same absolute distance between the target
and penalty area by inverting the signs of distances and
relative endpoints for movements with distances of −1.8cm,

-1,0

-0,5

0,0

0,5

1,0

re
la

ti
v
e

e
n
d
p
o
in

t
(c

m
)

-1,80 -1,35 -0,90

distance between target and penalty area centers (cm)

0,90 1,35 1,80

0.0

-0.2

-1.0

penalty:

Fig. 2. Average relative endpoints of the final 50 movements of the
simulated runs dependent on distances between target and penalty area and
penalty. Error bars show standard deviations.

−1.35cm, or −0.9cm. For the relative endpoint of the last
block of 50 movements, an analysis of variance revealed main
effects for absolute distance, penalty, as well as a significant
interaction between them: absolute distance, F (2, 148) =
57.0, p < 0.001; penalty, F (2, 148) = 64.6, p < 0.001;
interaction, F (4, 148) = 30.0, p < 0.001. Post-hoc t-
tests (Table I) confirm that the relative endpoint is only
shifted if hitting the red area is both likely and associated
to an actual penalty. To verify that the observed behavioral
adjustment results in an increase of reward, the development
of the average reward and the relative endpoint during the
ten blocks of movements was analyzed (Fig. 3). The initial
movement strategy only remains unchanged if hitting the red
area is either unlikely (distance = 1.8cm) or not penalized
because a near optimal reward is ensured from the beginning
of the simulated experiment. In the other conditions, the

TABLE I

POSTHOC T-TESTS FOR RELATIVE ENDPOINT

penalty: 0 vs. -0.2 penalty: -0.2 vs. -1

abs. distance T(34) p T(34) p

0.90 5.860 < 0.001 6.070a < 0.001

1.35 2.000 0.053 6.000 < 0.001

1.80 -0.404 > 0.500 0.049 > 0.500

abs. dist.: 0.90 vs.1.35 abs. dist.: 1.35 vs. 1.80

penalty T(34) p T(34) p

0.0 0.241 > 0.300 -0.663 > 0.500

-0.2 4.480 < 0.001 1.630 0.102
-1.0 4.880 < 0.001 7.260b < 0.001

at-test with T (12.7) due to n = 31 and inhomogenity of variance
bt-test with T (12.5) due to n = 31 and inhomogenity of variance

-0,2

0,0

0,2

a
v
e
ra

g
e

re
w

a
rd

0 3 6 9 0 3 6 9
block

0 3 6 9

-0,8

-0,4

0,0

re
la

ti
v
e

e
n
d
p
o
in

t
(c

m
)

0.0
-0.2
-1.0

abs. dist.: 0.9cm 1.35cm 1.80cm

penalty:

Fig. 3. Relative endpoints and rewards of movements, dependent on dis-
tance between reward and penalty area, penalty, and block (50 movements).

endpoint shifts away from the penalty area. In parallel, the
average reward increases in value (Fig. 3). To quantify the
impact of the various conditions on the target selection, the
average reward per movement in the first 50 movements was
compared with the average reward of the final 50 movements.
Pairwise t-tests revealed significant improvements for the
conditions with small absolute distances and non-zero penalty
(Table II). The conditions with an absolute distance of

TABLE II

PAIRWISE T-TESTS FOR REL. ENDPOINT AND REWARD CHANGE

penalty: -1 penalty: -0.2

abs. distance T(17) p T(17) p

0.90 reward 9.51a < 0.001 4.50 < 0.001

endpoint 4.50a < 0.01 4.34 < 0.001

1.35 reward 7.20 < 0.001 5.71 < 0.001

endpoint 5.10 < 0.001 2.98 < 0.01

at-test with T (12) due to n = 13 for abs. distance = 0.9

1.80cm also showed a significant but tiny improvement of
the average reward (< 0.009 points), but no changes in the
relative endpoint. All other conditions showed no significant
changes (Fig. 3). In summary, these results confirm that
the reinforcement learning based modulation of the target
representations increases average payoffs.

V. CONCLUSIONS

This paper presented the RL SURE REACH architecture,
which was used to model the acquisition of basic motor
skills with unsupervised learning during a childhood phase
and their use for the acquisition of task-specific skills with
reinforcement-learning in a later phase. The model was
validated by reproducing data obtained in a psychological
experiment, in which participants had to hit a rewarded area
on a touch screen while avoiding to touch penalty areas,
facing various cost and position configurations. In these
tests, similarly to humans, the model exhibited a remarkable
capability of shifting movement endpoints within the target

area, taking into account the possibility of hitting the penalty
areas due to motor and neural noise.

Most neural-network models of motor learning and control
proposed so far focus on the extraction of compact repre-
sentations of sensory-to-motor mappings. In this respect, the
experiments presented here show that adding reinforcement-
learning components to such models enables a sensorimotor
control loop to take into account the statistical properties of
the motor system. This can be very important to effectively
solve the location-redundancy problem and thus increase
behavioral performance. Neural population codes, as used
in RL SURE REACH, are well-suited to encode knowledge
about the statistical properties of tasks and our sensorimotor
systems [12], [13]. The results reported here show that this
knowledge is necessary to achieve one’s goals optimally
despite sensorimotor uncertainty.

ACKNOWLEDGMENT

This research was supported by the EU Projects ICEA,
contract no. FP6-IST-027819-IP, and MindRACES, contract
no. FP6-511931-STREP.

REFERENCES

[1] G. Rizzolatti and G. Luppino, “The cortical motor system.” Neuron,
vol. 31, no. 6, pp. 889–901, 2001.

[2] P. Cisek and J. F. Kalaska, “Neural correlates of reaching decisions in
dorsal premotor cortex: Specification of multiple direction choices and
final selection of action,” Neuron, vol. 45, no. 5, pp. 801–814, 2005.

[3] E. Todorov, “Optimality principles in sensorimotor control,” Nature
Review Neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[4] C. M. Harris and D. M. Wolpert, “Signal-dependent noise determines
motor planning,” Nature, vol. 394, pp. 780–784, 1998.

[5] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of
motor coordination,” Nature Neuroscience, vol. 5, no. 11, pp. 1226–
1235, 2002.

[6] J. Trommershäuser, L. T. Maloney, and M. S. Landy, “Statistical
decision theory and trade-offs in the control of motor response,” Spatial
Vision, vol. 16, no. 3-4, pp. 255–275, 2003.

[7] M. V. Butz, O. Herbort, and J. Hoffmann, “Exploiting redundancy for
flexible behavior: Unsupervised learning in a modular sensorimotor
control architecture,” Psychological Review, in press.

[8] O. Herbort and M. V. Butz, “Encoding complete body models enables
task dependent optimal control,” in press.

[9] D. Ognibene, A. Rega, and G. Baldassarre, “A model of reaching
integrating continuous reinforcement learning, accumulator models,
and direct inverse modelling,” in From Animals to Animats 9: Pro-
ceedings of the Ninth International Conference on the Simulation of
Adaptive Behavior (SAB-2006), S. Nolfi, G. Baldassarre, R. Calabretta,
J. Hallam, D. Marocco, J.-A. Meyer, O. Miglino, and D. Parisi, Eds.
Berlin: Springer Verlag, 2006, pp. 381–393.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[11] M. Haruno, D. M. Wolpert, and M. Kawato, “Mosaic model for
sensorimotor learning and control,” Neural Computation, vol. 13,
no. 10, pp. 2201–2220, 2001.

[12] K. P. Körding and D. M. Wolpert, “Bayesian integration in sensorimo-
tor learning,” Nature, vol. 427, pp. 244–247, 2004.

[13] A. Pouget, T. Dyan, and R. Zemel, “Information processing with
population codes,” Nature Reviews Neuroscience, vol. 1, pp. 125–132,
2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

