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Abstract— Psychological studies have shown immense beha-
vioral flexibility in arm reaching tasks. Intermanual learning
transfer (ILT) tasks have shown that both reaching movements
adapt to distorted spaces rather rapidly and the adaptation
generalizes to the behavior of other limbs. In this paper, we pre-
sent an ILT experiment and replicate it with feedforward neural
network (NN) architectures. We show that the NN architecture
is the key to successfully replicating the experiments. Moreover,
we show that dependent on the architecture and the initial
training schedule applied, an internal space representation
emerges that enables ILT. The results confirm that internal body
spaces, identified in neuroscience and cognitive psychological
research, can emerge solely due to an interdependence between
different limb movements and the right neural architecture. We
hypothesize that, in order to develop internal spatial represen-
tations observed in animals and humans, it might be sufficient
to enforce the integration of multiple correlated sensory and
motor information into one compact internal representation.

I. I NTRODUCTION

In psychological research, intermanual learning transfer
(ILT) has been recorded for at least 150 years, e.g. [1], [2].
Training one limb does not only improve performance of the
trained but also of the untrained, contralateral limb. Although
many studies have investigated this topic and have shown
various types of ILT, it remains unclear how learning transfer
is accomplished in the brain.

In this paper, we present a recent study on ILT. Participants
showed learning transfer in an aiming task with a target-
specific prism-like visual displacement. After training with
the right arm, the left arm exhibited the same adapted aiming
behavior without any actual training. Thus, ILT of a distorted
workspace was observed.

We model this behavior with two multi-layer neural net-
work (NN) architectures, trained with standard backpropa-
gation techniques [3]. We show that it is impossible to
qualitatively replicate the observed learning transfer with a
näıve approach. Based on the assumption that eye-centered
coordinates are transformed into an effector-independent
spatial representation, which controls both arms, we show
that ILT can be modeled using a Y-shaped NN architecture.
We show that when the two arms are trained with common
goals, an internal representation emerges that allows for
effective learning transfer. That is, also the untrained arm
adapts to the distorted work-space environment, as observed
in the experiments with humans.

We hypothesize that an internal effector-independent body-
space representation emerges, because the internal NN layers
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suitably transfer knowledge gained from one effector to the
other. The representations form due to the enforced compact
integration of multiple sensory and motor information and
their interdependence. Thus, internal bodyspaces may form
simply because they are the most effective representation to
ensure an adaptive and flexible manipulation of the outside
environment by multiple means—choosing the limb or ex-
tremity currently most suitable and available for the task at
hand.

The paper is structured as follows. We first provide back-
ground on ILT. We then detail the experiment conducted in
our laboratory that shows learning transfer from the trained
to the untrained hand in an aiming task. Next, we detail
the NN architectures used and show when learning transfer
is possible within the architectures. The paper ends with a
final discussion, summary, and conclusions.

II. I NTERMANUAL LEARNING TRANSFER

Investigators have used a diversity of tasks to demonstrate
ILT. One of the most typical ones is pointing under transfor-
med visual feedback [4]. Despite high experimental effort,
the mechanisms underlying ILT are not yet fully understood.

A. ILT Mechanisms

To perform goal-directed movements, a number of pro-
blems have to be solved A spatial target has to be selected,
usually based on visual information. Additionally, a final
arm posture needs to be selected that is sufficiently close
to the target [5]. To do so, the target location has to
be transformed from spatial, vision-based to effector-based
coordinates. The problem of learning such a transformation
is often termed aninverse kinematics problem. Other factors
including trajectory formation, motor command generation,
obstacle avoidance, hand posture selection, and the consi-
deration of other environmental task constraints will not be
further addressed in this study.

It is yet unclear which of these processes contributes to
which degree to ILT. Some researchers suggest that the
learned pattern of motor commands is transferred [6]. For
example, it was found that right-handers were more accurate
in drawing meaningless figures with the right hand, if they
had previously practiced the drawing of mirror-reversed
versions of the same figures with the left hand [7].

Other researchers have claimed that ILT occurs because the
actor learns a new mapping of vision-based target coordinates
onto effector-based target coordinates, which can be genera-
lized to the contralateral limb [8], [9]. Recent neurological
and behavioral data suggest that signals from a variety of



modalities, including vision, proprioception, audition,and
vestibular sensation are combined to form modular spatial
representations in the posterior parietal cortex [10], [11].
These effector-independent spatial representations may be
used to affect different effector systems and may consequent-
ly constitute the basis of ILT.

Support for this hypothesis can be found in a study in
which participants had to learn an artificial transformation
of elbow- and shoulder-joint angles during an aiming task.
Thereby, also the untrained arm adapted to the transformation
[9]. According to the authors, the adjustments had been made
to a central representation not specific to either arm but
common to both arms. Other spatial mapping alterations can
by found in the literature [12], [13], which all confirm high
behavioral plasticity in humans. Humans are able to quickly
adapt to spatial alterations, whereby the adaptivity is not
confined to a single extremity but appears to be transferable
to any available limb and even to tool usage [11].

To summarize, profit from prior contralateral training has
been demonstrated for mirror-reversed as well as for non-
reversed versions of the originally practiced movements. The
results suggest that ILT occurrence and type are mainly de-
pendent on the task-dependent goal representations activated
during training. The high relevance of activated goal repre-
sentations was also shown in bimanual behavioral studies in
which object manipulations [14] showed congruency effects
depend on task-dependent goal representations but not on
the symmetry of the actually executed movements. Also
the efficient execution of bimanual circular motion patterns
was shown to depend on non-conflicting goal representations
[15]. However, it remains unclear to what degree transfer
depends on particular body-, task-, training-, and representa-
tional constraints. In the remainder of this work, we focus on
ILT based on coordinate re-mappings. The following study
evaluates the capability of humans to remap coordinates and
transfer the remapping in an aiming task.

B. ILT in an Aiming Task

In an experiment by Lenhardet al. [16], [17] participants
exhibited ILT in an aiming task. The goal of the study was to
further investigate whether ILT is based on a re-interpretation
of the visually perceived target locations or on a transfer of
muscle-specific motor commands.

1) Experimental Setup:An experimental setup was used
in which visual feedback could be displaced for individual
targets (cf. Figure 1). Participants had no visual feedbackof
their own hand but rather saw a virtual spot representing the
position of the hand. An array of nine squares distributed in
a 3 grid depicted potential targets. Each critical movement
started from a square in the middle column and aimed at one
of the neighboring squares. For one single target the feedback
was manipulated. The virtual spot indicated that movements
towards this target were shorter than the actual movements.
Accordingly, the visual feedback signaled a hit when the real
position of the hand was beyond the target square.

To determine the degree of ILT, performance of both
hands was tested before and after adaptation. Hereby, visual
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Fig. 1. Participants could not see their hand. Instead, a virtual spot indicated
the current hand location. Neighboring targets had to be reached starting
from one of the three locations in the center column. The visual feedback
for one of the outside targets was manipulated so that the displayed hand
location did not correspond with its actual one.

feedback was given which always indicated a hit for any
aiming movement that ended outside of the starting square.
Consequently, error-based learning was impossible during
testing.

If ILT in this task was based on a re-interpretation of the
visually perceived location of the manipulated target, move-
ments of the untrained hand to the target should shifted in the
same direction as movements of the trained hand. Thus, if the
trained hand has learned to make farther movements in the
direction of the manipulated target, the untrained hand should
also show farther movements towards that target. If, however,
the ILT was based more on a directional representations, a
mirror-reversed version of the adapted movements should be
observed. Besides these two possible directions of adaptation,
also the generalization of the adaptation to targets in the near
vicinity was of interest.

2) Results: After adaptation training, the results of par-
ticipants that were not aware of the spatial manipulation
(based on a subsequent questionnaire) clearly indicated that
the trained hand adapted to the altered location. Also gene-
ralization to the neighboring targets in the same movement
direction was observable, aiming at them with slightly farther
movements. The adaption decreased with target distance to
the manipulated target and did not generalize to opposite
movement directions. Figure 3 (bottom bars for each target)
shows the adaptation in arm movements.

Test trials with the untrained hand revealed ILT. In fact,
no significant difference between the right and the left hand
adaptation was found. ILT took place in various conditions
with respect to location of the manipulated target, but not
in the opposite movement direction. Therefore, a transfer
of motor commands to homologous muscles of the other
arm could be ruled out as an explanation for the observed
learning transfer. Rather, it appeared that a target location
re-interpretation was used to control the aiming movements
of both hands.



III. S IMULATION OF ILT

Despite an extensive literature search, we were not able
to find a neural network (NN) model that simulated ILT.
The aim of the following NN architectures is to model the
transfer observed in the human participants with a simple
multi-layered NN, which is trained using backpropagation.

A. Training and Testing Data

The NN architectures tested were trained to learn the
coordinate transformations from eye-orientation-based target
coordinates to joint angle coordinates of the arm, which yield
a hand position that coincides with the target coordinates.
To generate suitable training data, the two-dimensional body
model shown in Figure 2 was used, which included two arms
and the eyes fixating a particular target. Hereby, the upper
arm and forearm were assumed to be 26cm and 30cm long,
respectively. Eye distance was set to 6.4cm and shoulder
distance to 34cm. These distances correspond on average to
the lengths of an adult human, where the forearm length
includes part of the hand.

In an initial long training phase, ten NNs were trained with
different random seeds for each architecture with a learning
rate δ = .1. The NNs learned the inverse kinematics of the
two arms, that is, they learned to transform eye angles, which
encode target locations, to arm angles, which determine the
corresponding hand location. To do so, 1,000 data pairs of
two eye angle pairs ((αl, βl), (αr, βr)) and corresponding
joint angle pairs ((γl, δl), (γr, δr), see Figure 2) were created.
Both hands always had to reach the same point in space.
The locations were uniformly randomly generated within a
20cm × 20cm area distant10cm in front of the eyes. All
networks were trained for10

7 iterations, sampling the data
uniformly randomly with replacement.

In a second much shorter adaptation phase with only10
4

iterations, the NNs were trained on the distorted workspace
task used in the experiments with humans. In this phase,
only nine locations were considered distributed in a3 × 3

grid. Rows and targets within a row were distant 3.2cm.
Corresponding to the experiments with humans, the location
of the upper left target was distorted by associating to the eye

Fig. 2. To mimic the experimental setup with humans, a spatial model was
used from which the training and testing data was generated.

angles joint angles that reached 1.96cm further to the left.
Furthermore, the middle column was sampled twice as often
to mimic the experiments with humans even closer. During
this adaptation phase, only one arm received feedback (γr,
δr), whereas the other received no feedback.

Finally, network adaption was tested feeding in the nine
eye angle locations that corresponded to the nine target
locations, recording the joint angles and corresponding hand
locations generated by the NNs.

B. A Multilayer Feed-forward Neural Network

The neural network architectures were generated using the
T-learn software, publicly available online [18]. Figure 4
shows the initial multilayer feed-forward network used in
the initial experiments (NN 1). The network was constructed
with nine hidden layers to be able to mimic multiple coor-
dinate transformations and investigate effects of bottleneck
location. All hidden layers consisted of six neurons except
for the sixth layer, which consisted of four units, creating
a processing bottleneck. The bottleneck further enforces
compact encodings, which is in accordance to the dimensio-
nality reduction technique recently shown to efficiently and
compactly encode multidimensional data in neural networks
[19]. All neurons had standard sigmoid activations [18],
except for the last hidden layer and the output layer, which
had linear activation patterns to be able to learn unnormalized
radian measures. The input layer consisted of the four input
values (αl, βl, αr, βr), to encode two parallel but separate
targets, and a bias neuron, whose activity was set to one
throughout the simulations.

After the 10
7 initial training iterations, performance tests

of the ten independently trained NN 1 networks on the trai-
ning data yielded a roots mean square error of RMS=.0088±

.0029 in joint angle coordinates. This confirms that the
NN 1 networks accurately learned to transform two pairs
of identical eye angle coordinates into two separate pairs of
joint angles.

After the initial training, the adaption phase was applied to
each of the ten networks. Figure 3A (top bars for each target)
shows the adaptation in horizontal direction after10

4 adapti-
on steps. The trained arm exhibits a very effective adaptation
moving 1.01± .348 further to the left than necessary (target
1). Also joint angles for the neighboring targets (target 2 and
target 4) exhibit significant adaptation. Thus, human data was
mimicked which exhibited a generalized adaptation to target
4 but not to target 2 (Figure 3A bottom bars), because the
center column was the start column [16].

However, when testing the untrained arm, no systematic
adaptation was observable (Figure 3B top bars). The large
standard deviations indicate that the untrained arm was
affected by network crosstalk, but not in any directed way.
This shows that NN 1 itself is not able to account for ILT.

In order to evaluate if an effector-independent representati-
on evolves in NN 1 that can account for the transfer observed
in humans, we fixed all the weights of the connections from
the output layer until the bottleneck layer. Doing so, errors
encountered during the adaption phase were back-propagated
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Fig. 3. The figure shows horizontal deviations of the hand from the nine visually perceived target locations (in millimeters). During the adaptation phase,
target 1 was re-located19.6mm to the left. In all NN settings, the trained arm adapted to the spatial distortion, exhibiting different amounts of generalization
to the neighboring targets (A). The adaptation of the untrained arm (B) strongly depends on the NN architecture (NN 1 vs. NN 2), if weight adaptation
was unconstrained or restricted to the layers before the bottleneck layer (free vs. fixed), and if the NN was trained on common goals or separate goals
only (NN 2 vs. NN 2 sep). Human data (lowest bar in all target plots) shows typical adaption of the trained arm (A) and ILT in the untrained arm (B).

until the bottleneck layer without weight adaptation. From
the bottleneck layer on then, the errors were back-propagated
further and weights were adjusted until the input layer.

Figure 3A shows slightly smaller adaptations of the trained
arm compared to the adaptations with unconstrained weight
adaptation. However, now also the untrained arm exhibits
strong adaptation tendency towards the left (Figure 3B).
Thus, transfer is taking place. The transfer is not locally con-
fined to target 1, though, but it extends to all target locations.
This indicates that earlier hidden layers in NN 1 commonly
represent the surrounding space but transformation effects
have a global rather than a local impact. Thus, ILT is not
well replicated.

C. Emergent Learning of an Effector-Independent Space

The results so far indicate that in NN 1 the other arm is
affected by the adaptation, but rather in an unspecific fashion.
Thus, the spatial representation of the two arms somewhat
interacts within the hidden layers, but the interaction is not
locally confined.

In neuroscience and psychology, though, it is well know
that internal body spaces exhibit local encodings. Moreover,
effector specific cortical areas can be distinguished from
effector unspecific, pre-motor areas [11]. Thus, we generated
a Y-shaped neural network, NN 2, that processed the eye
angles in several common hidden layers and splits into two
parts after the bottleneck layer (see Figure 4). We expected
that the coordinate transformation from effector-independent
representations to the two pairs of joint angles is accomplis-

NN 1 NN 2

bottleneck neurons

hidden neurons

input neurons

output neurons

bias neurons

hidden
neurons

Fig. 4. A multilayer neural network architecture (NN 1) and a Y-shaped
neural architecture was used in the NN experiments. A bottleneck layer
enforced compact encodings.

hed after the bottleneck layer. Before the bottleneck layer, the
eye angles may be suitably transformed into a maximally
compact internal representation, which is enforced by the
bottleneck layer.

To test the emergent plasticity of the resulting networks,
we again trained 10 sets of NN 2 weights, which yielded
a performance ofRMS = .0067 ± .0015 on the training
data (in joint angle coordinates). After the adaptation phase
and as in NN 1, the trained hand shows suitable adaptation



to the transformed target 1 as well as to the surrounding
targets (Figure 3A). Even more interestingly, though, also
the untrained arm adapts locally to the transformation. The
adaptation of targets 1, 2, and 4 show adaptations to the left
comparable to the trained arm and in line with the human
data. Moreover, adaptations to the other targets differ from
the actual correct position only slightly. Thus, local ILT
occurs, similar to the one observed in humans.

Despite this very promising result, the adaptation in the
y-direction shows that the transfer is not confined to the
horizontal direction but also affects the vertical axis. The
transformation in the vertical direction shows an oblique,
negative distortion away from target 1. Target 9 was un-
dershot with−17.6 ± 9.8mm (full data not shown). In
NN 1, these distortions were not as extreme—a maximum
displacement of4.73 ± 3.96mm was observe for target 3.
Thus, the horizontal direction exhibits ILT but additional
crosstalk disrupts adaptation in the vertical direction.

To investigate whether the adaptation in the trained arm
before the bottleneck layer caused this effect, we again
fixed the weights between the output and bottleneck layers
during adaptation. Figure 3 shows that the displacements
are comparable to the ones without fixed weights, albeit
the adaptation is slightly more global. In comparison to the
adaption in NN 1, though, adaption remains much more
locally confined. Moreover, the adaptation in the vertical
direction is significantly decreased (maximum distortion of
−4.10±8.41mm for target 9). Thus, this setup most closely
replicates the local ILT observed in humans.

D. Training with Different Goal Location Pairs

Recent insights from psychology furthermore suggest that
generalization in motor learning strongly depends on the
history of motor actions. For example, it was shown that
knowledge transfer occurs from shoulder to wrist manipulati-
ons but not vice versa, presumably since the wrist also moves
through space when the shoulder is moved, but not the other
way round. The authors suggest that an interdependence
between effectors needs to be present in order to enable
knowledge transfer [20].

To see if knowledge transfer depends on the interdepen-
dence between arm movements in our model, we generated
another training set in which each arm had to reach a
different target. Thus, theαl, βl pair for the left arm now
differed from theαr, βr pair. Again, 1,000 data entries were
generated and ten NN 2 networks were trained on the data
for 10

7 steps with different random seeds. As expected, the
task was harder for the networks so that one out of the
ten networks did not succeed in learning the transformation
accurately. We consequently replaced that network with an
additional network trained with an additional random seed.
Performance evaluations on the training data yielded an
RMS of .0186 ± .0030 in joint angle coordinates in the ten
successfully trained networks.

Figure 3A shows that also this network (NN 2 sep) is able
to adapt to the transformation locally with the trained arm.
However, the untrained arm does not show any systematic

transformation, as indicated by the large standard deviations
and the displacement in the opposite direction (Figure 3B).
Thus, common, interdependent training of the two arms
seems necessary to form emergent internal representations
that support ILT.

IV. D ISCUSSION

Our neural network simulations have shown that internal
NN representations that are suitable for ILT only emerge
under the following conditions. (1) The two simulated effec-
tors need to be trained interdependently. In our simulations,
this was accomplished by the training of common goals
during training. (2) The network architecture needs to enforce
independent processing of the inverse kinematics of the two
arms, while relying on an internally hidden common code.
This was accomplished by a Y-shaped NN architecture (NN 2
in Figure 4). (3) If the weight adaptation is back-propagated
to the common layers and does not affect the separate layers,
the ILT is even more similar to the one observed in humans.
This suggests that the internal adaptation of an effector-
independent internal common code yields the most accurate
effects.

Clearly there is lots of room to improve the applied neural
architecture and the utilized data. Research suggests that
internal body spaces are encoded with population codes
with various, body-related topologies [11]. Moreover, bidi-
rectional, Bayesian-like processing occurs in the brain [21].
An interesting challenge lies in the exploitation of this
knowledge to accomplish even more accurate and reliable
ILT in artificial learning systems.

A. Population-Encoded Body Spaces

Recent neuro- and cognitive psychological investigations
have shown that the brain encodes the surrounding space
in various, multimodal, body-related spatial representations
[11], [22], [23]. For example, cortical areas were identified
in monkeys that encode aperipersonalarm space. A neuron
in this area may respond if the arm is touched at a certain
location, if an object is close to that location, and even if the
position is simply looked at [22].

These spaces are mostly encoded by population codes,
that is, neural representations in which each neuron has a
local receptive field in the encoded (body-) space. Integrating
neural activity by means of single cell recordings in mon-
keys, it is now even possible to derive current arm posture
and current arm movements from this activity [23]. Also
psychological experiments indicate that partially effector-
independent internal neural representations exist [11]. As
suggested, these effector-independent spatial representations
might be used to accomplish re-mappings and some types of
ILT observed in humans [9], [8], [12], [13].

Our simulations focused on re-mappings from eye to joint
angles. The currently applied networks, however, did not
apply population encodings. Due to the sparsity of all layers,
and the bottleneck layer in particular, it can also not be
expected that the neurons in the layers exhibit local receptive
field properties. Thus, a future research challenge will be



to account for ILT by means of NNs based on population
encodings.

Nonetheless, our simulations indicated that fundamental
learning biases are necessary to evolve internal codes suitable
to accomplish ILT. Thus, it can be expected that also popula-
tion encoded internal spatial representations will dependon
these factors.

B. Multimodular Bayesian Processing

Besides the population encoding, it was shown that body
spaces are highly modular and are present in various moda-
lities. Moreover, the spaces are highly interactive integrating
available sensory, motor, and sensorimotor information [11],
[23].

To be able to integrate multiple sources of information,
Bayesian-based processing mechanisms seem necessary [21].
Information should be integrated dependent on its current
reliability. For example, it was shown that arm represen-
tations in the motor cortex mainly rely on proprioceptive
feedback, whereas the ventral premotor cortex primarily
represents visual information in a distorted movement task
[23]. Thus, neuron activity depends on information reliability,
availability, but also on intention.

Clearly, such higher level processing mechanisms are not
possible in the investigated NN architectures. For example,
bidirectional processing is not possible with a feedforward
neural network. Nonetheless, the Bayesian brain hypothesis
and the reliance on different sensory and motor feedback in
different brain areas indicates that adaptations in the brain
can occur in different locations dependent on information
reliability. Thus, fixing the weights in the layers close to
motor output and propagating encountered spatial distortions
to deeper neural layers is well in line with neurological
findings [23].

C. Conclusions

Although the NNs used to simulate ILT are certainly far
too simple to account for actual neural processing mecha-
nisms in the brain, the findings identified learning biases
necessary to shape the internal neural network structure.
These biases might need to be integrated in other ways into
other neural structures, such as population-encoded structu-
res. Nonetheless, the results suggest that interdependence bet-
ween multiple effectors, interdependencies inside the neural
architectures, and effective neural adaptation within will be
the key to shape emergent internal body spaces suitable
for ILT. Future research will show which other constraints
are necessary to generate such spaces reliably in more
neurologically plausible learning architectures.
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