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Autonomously developing organisms face several challenges when learning reaching movements. First,
motor control is learned unsupervised or self-supervised. Second, knowledge of sensorimotor contin-
gencies is acquired in contexts in which action consequences unfold in time. Third, motor redundancies
must be resolved. To solve all 3 of these problems, the authors propose a sensorimotor, unsupervised,
redundancy-resolving control architecture (SURE_REACH), based on the ideomotor principle. Given a
3-degrees-of-freedom arm in a 2-dimensional environment, SURE_REACH encodes 2 spatial arm
representations with neural population codes: a hand end-point coordinate space and an angular arm
posture space. A posture memory solves the inverse kinematics problem by associating hand end-point
neurons with neurons in posture space. An inverse sensorimotor model associates posture neurons with
each other action-dependently. Together, population encoding, redundant posture memory, and the
inverse sensorimotor model enable SURE_REACH to learn and represent sensorimotor grounded
distance measures and to use dynamic programming to reach goals efficiently. The architecture not only
solves the redundancy problem but also increases goal reaching flexibility, accounting for additional task
constraints or realizing obstacle avoidance. While the spatial population codes resemble neurophysio-
logical structures, the simulations confirm the flexibility and plausibility of the model by mimicking
previously published data in arm-reaching tasks.
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Controlling one’s body is the first prerequisite to successful
interaction with the environment. This ability, however, is mostly
not innate. Even seemingly simple goal-directed reaching move-
ments are learned during infancy (Konczak, Borutta, & Dichgans,
1997; Konczak & Dichgans, 1997; von Hofsten, 2003). More
complex behavior—like walking, skiing, or playing an instru-
ment—requires significantly more, and often continuous, learning
and training. To enable the acquisition as well as the flexible and
continuous adaptation of behavior to changing environmental and
bodily constraints, highly modular hierarchical control architec-
tures appear necessary (Poggio & Bizzi, 2004).

Recent findings suggest that goals in goal-directed behavior are
encoded in terms of desired perceptual states (Elsner & Hommel,
2001; Hoffmann, 1993; Hoffmann, Stöcker, & Kunde, 2004;
Kunde, Koch, & Hoffmann, 2004; Prinz, 1997). To trigger goal-
directed behavior, these desired perceptual states have to be linked
to efferent signals, or actions, whose application is expected to

result in perceiving what is desired. These perception–action links
can be encoded only self-supervised from interactions with the
environment.

One way to encode such links is to learn sensorimotor contin-
gencies, that is, action-dependent sensory correlations. Such con-
tingencies were recently acknowledged to be highly important in
cognitive systems for the realization of forward sensory emulation
and inverse goal-directed motor control (for reviews, see Grush,
2004; O’Regan & Noë, 2001). We encode sensorimotor contin-
gencies as action-dependent situation-effect links.

The contingencies are learned and continuously adapted. To
enable goal-directed behavior, the sensorimotor knowledge is in-
tegrated into inverse models, which evoke suitable actions to reach
desired goal states (e.g., goal postures or locations) dependent on
the current state of the body (e.g., current arm posture; Flash &
Sejnowski, 2001; Grush, 2004; Kawato, 1999; Wolpert & Ghahra-
mani, 2000).

Three Challenges for a Self-Developing, Adaptive
Controller

We are interested in learning a flexible, adaptive, goal-directed
motor control system from simple interactions of body and envi-
ronment. This is by no means trivial: (a) Learning needs to be
unsupervised, or self-supervised, because no teaching signals are
available; (b) action sequences have to be triggered to reach distant
goals; (c) redundancies have to be resolved for action execution
because desired effects can usually be produced by multiple, often
infinite, action possibilities.
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This article addresses these three challenges proposing a senso-
rimotor, unsupervised, redundancy-resolving control architecture
(SURE_REACH). SURE_REACH is implemented as a neural net-
work model and is tested on the control of a three-degrees-of-
freedom arm in a two-dimensional (2-D) environment.1 Figure 1
shows the basic components of the SURE_REACH architecture
and notes the representations and capabilities of each component
with respect to the investigated arm control task. During move-
ment production, a desired hand location in external hand space is
mapped onto a set of suitable arm postures by a posture memory.
The redundant set of suitable arm postures is diffused in the
population-encoded posture space by means of dynamic program-
ming based on a learned inverse sensorimotor model. The result is
a sensory-to-motor mapping, which encodes the closest paths to
the desired goal postures from any starting posture. The mapping
is similar to field-based trajectory representations that encode
whole families of solutions in a holographic memory (Morasso,
Sanguineti, & Spada, 1997). The mapping is used by a closed-loop
motor controller to generate the motor commands that move the
arm toward the most suitable arm posture and hence the hand
toward the desired hand location. Both the posture memory and
inverse sensorimotor model encode redundant solutions. Whereas
the posture memory expands a single hand position to all associ-
ated arm postures, the inverse sensorimotor model encodes redun-
dant motor commands to reach goal postures. In the next para-
graphs, we further specify how SURE_REACH solves the three
challenges listed above.

The Unsupervised, or Self-Supervised, Learning
Challenge

A powerful principle that proposes a solution to the challenge of
unsupervised, or self-supervised, learning during development is
the ideomotor principle, which has been proposed in psychology
for over a century (Herbart, 1825; James, 1890; cf. Hoffmann et

al., 2004). The ideomotor principle suggests that an organism
learns an inverse model for action selection and control based on
the sensorimotor contingencies it perceives during initially random
motor babbling. SURE_REACH adheres to this principle. It learns
unsupervised both (a) an inverse kinematics model, which maps
hand positions in extrinsic hand space to (redundant) arm postures
in intrinsic posture space, and (b) an inverse sensorimotor model,
which associates contiguous arm postures with each other action-
dependently. The inverse kinematics model is stored in the posture
memory. The inverse sensorimotor model enables the motor con-
troller to determine sensorimotor-grounded distances to goals. It is
used to accomplish efficient goal-directed motor control. The
approach is generally similar to early self-supervised control ap-
proaches (Kuperstein, 1988; Mel, 1991) but extends them to con-
trol redundant bodies more flexibly and efficiently.

The Action Sequence Generation Challenge

Desired goal states can often be reached only after the execution
of extended action sequences. To control highly complex plants, in
which the consequences of actions unfold in time, complex action
sequences may need to be executed to reach a particular destina-
tion. SURE_REACH proposes a solution to this problem by learn-
ing an inverse sensorimotor model, which is embedded in posture
space. Action trajectories are generated dynamically during move-
ment preparation by means of dynamic programming, which prop-
agates activity by means of the inverse sensorimotor model within
posture space. The result is a sensory-to-motor mapping, which
enables the fast and flexible closed-loop control of complex action
sequences to distant goal states.

1 The source code, an executable demo program, and a program manual
are available at http://www.psychologie.uni-wuerzburg.de/i3pages/
SURE_REACH/

Sensorimotor
Model

Posture
Memory

sensori-

Figure 1. The SURE_REACH implementation in this article consists of five basic modules: two population-
encoded spatial representations of hand end-point location and arm posture: a posture memory (an inverse
kinematics model) that associated hand end-point locations with (redundant) corresponding arm postures; a
motor controller that contains an inverse sensorimotor model, which associates postures action-dependently; a
body, which is a three-degrees-of-freedom arm in this article.
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The Redundancy Resolution Challenge

The final problem addressed is the resolution of redundancies
(Bernstein, 1967). Almost any goal can be reached in multiple
ways, but only one way can be applied at any given time. For
example, when reaching for a glass, the left or right hand may be
used, the final arm posture can vary in an infinite number of ways
(because of the redundant degrees of freedom of the arm), and one
movement trajectory must be selected from infinite possibilities.
Figure 2 illustrates two types of redundancy problems: In Figure
2A, multiple goal postures realize a single hand location; in Fig-
ures 2B and 2C, multiple trajectories are possible to reach the same
goal posture. Thus, for even relatively simple tasks, an abundance
of possible means are available.

Despite this abundance, human arm movements are usually
rather stereotypic, suggesting that many constraints bias the action
selection mechanism (Flash & Hogan, 1985). These additional
constraints, which reduce redundancy, are called optimality prin-
ciples. They enable the selection of an optimal solution among all
possible solutions on the basis of constraints such as movement
smoothness (Flash & Hogan, 1985) or end-point accuracy and
comfort (Harris & Wolpert, 1998; Weigelt, Kunde, & Prinz, 2006;
for reviews on optimality principles, see Engelbrecht, 2001;
Todorov, 2004).

To resolve these redundancies, the motor controller of
SURE_REACH applies dynamic programming to propagate goal-
originating activity within the population-encoded posture space
on the basis of its inverse sensorimotor model. The result is a
sensory-to-motor mapping in posture space that is used to execute
motor commands by means of closed-loop control. Goal distances
are consequently implicitly encoded in the generated sensory-to-
motor mapping, which is grounded on the experienced sensorimo-
tor contingencies. The mapping implicitly encodes movement tra-
jectories that directly lead to the goal posture that is closest to the
actual posture according to the inverse sensorimotor model.

The redundancy resolution mechanism in SURE_REACH
builds on the posture-based motion planning theory (PB theory),
which also addresses the problem of redundancy resolution and
trajectory generation (Rosenbaum, Engelbrecht, Bushe, & Louko-
poulos, 1993; Rosenbaum, Loukopoulos, Meulenbroek, Vaughan,
& Engelbrecht, 1995; Rosenbaum, Meulenbroek, Vaughan, &
Jansen, 2001). The ability to apply different optimality criteria
from one movement to the next has enabled the PB theory to
account for a wide range of empirical findings. SURE_REACH
additionally grounds the required optimality criteria on the expe-
rienced self-generated sensorimotor contingencies. Further differ-
ences and similarities between both models are scrutinized in the
Discussion section.

Overview

The remainder of this work is structured as follows: First, we
review other computational models of motor learning and control,
focusing on their capabilities of learning sensorimotor contingen-
cies and resolving redundancies. Second, the proposed
SURE_REACH neural network model is introduced and evalu-
ated, confirming efficient and flexible initialization and control of
reaching movements. Moreover, we show how the architecture can
flexibly adapt behavior to additional task constraints. Comparisons
with various behavioral data from the literature confirm the plau-
sibility of the model. The article ends with a discussion on the
novelty of the approach, the relation to neuroscience, future chal-
lenges for SURE_REACH, and final conclusions.

Current Computational Models

In this section, we investigate various available computational
models of motor learning and control that focus on unsupervised or
self-supervised learning. Models that explicitly investigate super-
vised learning are not discussed (e.g., Ito, Noda, Hoshino, & Tani,
2006; Stringer, Rolls, Trappenberg, & de Araujo, 2003). For each
investigated model, we provide a short introduction and then
assess the model’s contribution to the solution of the three prob-
lems discussed above. Focusing on the redundancy problem, we
divide the computational models into two groups. In the first
group, redundancy is resolved before or during learning by adding
additional optimality constraints to the learning task. In the second
group, redundant solutions are encoded and resolved only imme-
diately before movement production. SURE_REACH belongs to
the latter group of models.

When redundancy is resolved before or during learning (see
Figure 3, top), the inverse model does not store all possible
solutions for an inverse problem, but rather it stores one single
solution, which optimizes a given optimality criterion. This makes
action selection straightforward. For any given start and goal, the
inverse model learns exactly one solution so that no redundancy
needs to be resolved when acting goal-directedly. The drawback of
this approach is that it lacks flexibility. If a behavior that was
previously optimal is now suboptimal or impossible because of, for
example, injury, the appearance of obstacles, or other task-related
constraints, then the organism is unable to flexibly switch to an
alternative, previously suboptimal behavior.

When redundancy is resolved only before movement produc-
tion, the architecture has to store many redundant behaviors and
then select one of the available ones to pursue its current goal (see
Figure 3, bottom). Thus, the inverse model may provide multiple
or even an infinite variety of possible solutions. The approach is
computationally more demanding because the inverse model needs
to store multiple solutions for a problem and because redundancy
has to be resolved on the fly during behavior selection and control.
The advantage, however, is a system that is able to quickly react to
novel or changing task-dependent optimality criteria.

We now compare several relevant models available in the liter-
ature, focusing on their redundancy-resolving approaches, on their
capability of triggering complex motor sequences to reach distant
goals, and on their learning approaches.

A B C

Figure 2. Motor redundancy has to be resolved on different levels, like
end postures (A) or trajectories (B and C).
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Resolving Redundancy Before or During Learning

Models of motor learning that resolve redundancy before or
during learning usually use error-based learning mechanisms that
strive to learn the optimal solution to the inverse problem. Three
common goal-directed approaches to motor learning are direct
inverse modeling (DIM; Jordan & Rumelhart, 1992), feedback
error learning (FEL; Kawato, Furukawa, & Suzuki, 1987), and
resolved motion rate control (RMRC; Jordan & Rumelhart, 1992;
Whitney, 1969). Additionally, direct reinforcement learning meth-
ods have shown some success in this context (Berthier, 1996;
Berthier, Rosenstein, & Barto, 2005).

DIM Approaches

DIM has been applied to model motor learning within a range of
computational models (Baraduc, Guigon, & Burnod, 1999, 2001;
Bullock, Grossberg, & Guenther, 1993; Kuperstein, 1988, 1991;
Ognibene, Rega, & Baldassarre, 2006). DIM learns an inverse
model by observing action effects. Regardless of what the current
movement goal is or if such a goal exists, given a current sensory
effect, DIM computes the action that may have caused the sensa-
tion. If a difference between computed and actually executed
action is detected, DIM adjusts its inverse model accordingly. As
soon as the inverse model is sufficiently accurate, it can be used to
issue motor commands for desired goal states.

A big drawback of DIM is that it is not guaranteed to converge
if the controlled plant is redundant. In fact, it is destined to fail if
the set of goal states is nonconvex (Jordan & Rumelhart, 1992).2

Consider the task of determining a joint configuration that locates
the hand of a two-joint planar arm at a desired position. During
learning, each hand location may be realized by different joint
angle configurations, for example, one with the elbow oriented
clockwise and one with the elbow oriented counterclockwise.
Hence, no consistent bias toward one of the joint configurations
exists, and the inverse model is likely to evoke a mixture of both
postures, consequently missing the target (cf. Figure 4).

Some DIM approaches use arm models with only two joints and
a limited set of possible joint angles, avoiding the necessity of
handling redundancy (e.g., Baraduc et al., 1999, 2001; Ognibene et
al., 2006). Others are able to control plants with redundant degrees
of freedom by imposing additional constraints during learning that
eliminate the redundancy (Bullock et al., 1993).

Additionally, DIM is only applicable in kinematic learning
contexts that yield a clear temporal relationship between action
and effect. For example, DIM can be applied if movements in the
same direction require the same motor commands, independently
of the desired movement amplitude (Bullock et al., 1993). How-
ever, DIM can only be applied with additional enhancements to
problems in which a sequence of different motor commands needs
to be issued to reach a goal effectively.

With respect to learning, DIM is a self-supervised learning
approach. No training signals need to be provided from the out-
side. DIM implementations learn according to the ideomotor prin-
ciple, initially executing random actions and learning from the
observation of the consequently observed sensorimotor contingen-
cies.

To summarize, albeit DIM is a self-supervised learning ap-
proach, complex body interactions that unfold in time can be
learned only with additional system enhancements. Most impor-
tant, redundancy is resolved before learning, for example, by
constraining the learning experience or the plant characteristics.

FEL Approaches

Another error-based learning scheme for training inverse mod-
els is FEL (Kawato et al., 1987). In this case, the inverse model is
learned dependent on a preexisting feedback controller. Initially,
the inverse model does not contribute to the formation of useful
actions. When a difference between desired and perceived states
arises, the “innate” feedback controller triggers suitable actions for
adjustment. These adjustments are used as training signals for the
inverse model, shifting the output of the inverse model in the
direction of the adjustment signal of the feedback controller. This
levels out deficiencies of the feedback controller. Eventually, the
inverse model is able to control the plant on its own.

This principle was mainly applied to model cerebellar motor
learning (Barto, Fagg, Sitkoff, & Houk, 1999; Berthier, Singh,
Barto, & Houk, 1992, 1993; Haruno, Wolpert, & Kawato, 2001;
Kawato et al., 1987; Kawato & Gomi, 1992; Schweighofer, Arbib,
& Kawato, 1998; Schweighofer, Spoelstra, Arbib, & Kawato,
1998; Wolpert & Kawato, 1998) but also to motor learning in
general (Karniel & Inbar, 1997). FEL models analyze the role of
the cerebellum as a side loop of the motor system, which is trained
by corrective cerebral motor commands, and which is responsible
for smoothing movements and enhancing control efficiency.

2 A set of states is nonconvex if there exists at least one state not in the
set that lies between two states that are in the set.

IM IM

IM IM

applicable
actions

applicable
actions

selected
action

selected
action

Figure 3. Motor redundancy may be resolved before the inverse model is
learned (top) or afterward during movement production (bottom).

redluohs

training elbow

Figure 4. If the goal set is nonconvex (e.g., two separate points in joint
angle space), direct inverse modeling might store a nonsolution for the
inverse problem (solid circle inside box).
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Despite their compelling hierarchical control structures and pro-
gressively smoother and more efficient behavior control, FEL
approaches contribute little to the question of how motor redun-
dancy might be resolved. The redundancy-resolving problem per-
sists as in the DIM approaches above. If different actions are
applicable to reach a goal, and the feedback controller randomly
chooses between those actions, then the learning mechanism is
destined to fail if the set of alternatives is nonconvex (Jordan &
Rumelhart, 1992). The feedback controller has to be consistent in
its action choice to ensure successful learning. Hence, it is the
preexisting feedback controller that implicitly solves the redun-
dancy problem in FEL.

With respect to the unsupervised learning challenge, FEL some-
what sidesteps this problem by assuming the existence of a simple
closed-loop controller, which exerts corrective motor commands
that are based on position error. The controller is used to transform
errors in task space to errors in action space (Kawato, 1990),
providing the missing teaching signal. Hence, FEL is not interested
in learning a basic controller, but rather in improving the perfor-
mance of the controller by higher level control structures.

FEL architectures mainly tackle the problem of controlling
highly complex plants, whose bodily interactions unfold in time.
During learning, goals are explicitly represented over longer peri-
ods of time, enabling the learning of far-reaching sensorimotor
contingencies. The approach stresses the formation of associations
between potential goals and actions that have to be carried out for
a considerable duration before the goal is actually reached. As a
consequence, hierarchical control structures develop that improve
behavior efficiency and smoothness (Haruno et al., 2001; Kawato
et al., 1987; Wolpert & Kawato, 1998).

To summarize, FEL does not explicitly tackle the redundancy
problem. Rather, FEL resolves redundancy by means of a preex-
isting feedback controller. In this sense, FEL addresses the prob-
lem of acquiring a sophisticated inverse model based on a basic
feedback controller. Thus, FEL significantly refines a simple con-
trol strategy in order to be able to execute complex behavioral
control strategies that efficiently unfold in time.

RMRC

RMRC (Whitney, 1969) learns the forward kinematics of a plant
by determining the Jacobian of the plant.3 The learned Jacobian in
an arm usually relates displacements in joint angle space to dis-
placements in end-effector space (Craig, 2005). In effect, the
Jacobian can be used to determine end-effector position changes
given joint angle changes.

To solve the inverse kinematics, the inverse of the Jacobian
must be determined or approximated. In redundant control prob-
lems, however, RMRC also faces the one-to-many mapping prob-
lem and needs to resolve redundancy to be able to generate a
suitable inverse of the Jacobian. For example, additional optimal-
ity criteria may be imposed, such as a preferred basic body posture
(D’Souza, Vijayakumar, & Schaal, 2001).

Another instantiation of RMRC is the distal supervised learning
approach (Jordan & Rumelhart, 1992), which was introduced to
solve the nonconvexity problem in DIM. In this case, first a
forward model is trained to predict action consequences. Then an
inverse model is learned, which may be initialized by an inverse
model learned by DIM. The inverse model is learned by back

propagating the error in end-point space through the forward
model. This gives an error signal for the motor controller and
allows the learning of a unique inverse model. The necessary
constraints to resolve redundancy are implicit in the error back-
propagation approach coupled with the sampled training set.

As in FEL and DIM, though, distal supervised learning and
RMRC in general learn one solution to a problem, forgetting about
all alternative solutions. In distal supervised learning, this solution
is the one that generates the shortest paths averaged over the
training set data. In RMRC, in general, other constraints can be
imposed to enforce optimal paths. Thus, RMRC cannot flexibly
account for novel task constraints, previously unseen goal combi-
nations, or obstacle avoidance on the fly (D’Souza et al., 2001).

Direct Reinforcement Learning (RL) Approaches

Unlike the above error-based learning schemes, direct RL ap-
proaches learn behavioral policies solely on the basis of reward-
based feedback.4 The reward is usually back propagated, approx-
imating a value function that indicates the value of a state or
state–action pair for the task at hand. Usually, a particular form of
the Bellman (1957) equation for optimal control is learned. De-
pendent on the representation, the policy can be either directly
deduced from the value function or improved progressively re-
specting the value function, which is done, for example, in
Q-learning or in actor–critic methods, respectively (Sutton &
Barto, 1998). In previous arm control applications of direct RL,
either the action that yielded the highest reward was learned with
actor–critic methods (Berthier et al., 2005; Kositsky & Barto,
2002), or a state–action value function was learned with
Q-learning (Berthier, 1996).

In these direct RL approaches, redundancy is also resolved
before learning by the imposition of a particular reward scheme.
Direct RL approaches learn the optimal policy for one particular
reward scheme, such as a particular goal location in a reaching
task. Thus, depending on the chosen reward scheme and the
representation used, direct RL is more or less inflexible in account-
ing for novel task constraints or goal constellations.

The compelling advantage of RL is that it does not require the
existence of a training signal, such as provided by the feedback
controller in FEL, which explicitly encodes the correct action for
a given goal. Reward propagation alone suffices to develop an
optimal behavioral policy for a particular task at hand. Because the
learning approach is consequently more general than FEL, DIM,
and RMRC, learning usually takes considerably longer.

An additional positive feature of RL approaches is that they are
able to generate complex action sequences that unfold in time.

3 The Jacobian is a matrix of all first-order partial derivatives.
4 Direct RL approaches are those RL approaches that learn optimal

behavioral policies directly without the use of a model of their environ-
ment. Therefore, direct RL is often also referred to as model-free RL. In
contrast to direct RL, indirect RL is model-based. That is, indirect RL uses
a potentially learned model of the environment to learn or generate its
current behavioral policy. Dynamic programming may be considered the
most fundamental form of model-based RL (Sutton & Barto, 1998). Many
hybrid systems exist that combine indirect RL with direct RL techniques,
as exemplified in the Dyna architecture (Sutton, 1990) or in real-time
dynamic programming (Barto et al., 1995).
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Because of the reward back propagation, RL can acquire optimal
policies in plants with delayed action effects. Thus, tasks can be
solved that require the execution of long and complex action
sequences.

To summarize, direct RL methods provide an interesting alter-
native to the approaches mentioned above. Unlike DIM, they are
also applicable in redundant plants and for learning complex action
sequences. Unlike FEL, they do not require a preexisting feedback
controller that provides consistent learning signals. Unlike RMRC,
no forward model is necessary to be able to learn a behavioral
policy. The largest drawback of direct RL approaches, however, is
their behavioral inflexibility: Direct RL approaches learn one
particular policy that optimally solves one particular task (with the
encountered reward scheme). If the task changes, such as reward
signals, discount factors, plant properties, or desired goal constel-
lations, then the optimal policy changes and direct RL needs to
relearn (often from scratch). Relative goal representations can
partially alleviate this problem, but they only work well in plants
in which the control strategy is sufficiently independent of the
current situation or in which the input space is small enough to be
able to account for situation dependencies. Alternatively, different
goals may be represented explicitly, which, however, significantly
decreases learning speed. Thus, although direct RL approaches are
very elegant behavioral policy learners, they are not very well
suited to flexibly adjust their behavioral policies to novel task
constraints or reward distributions.

Short Summary

This section shows how different learning schemes solve the
redundancy problem before or during learning. DIM requires a
nonredundant plant with a one-to-one mapping between actions
and effects, or it requires the imposition of additional mechanisms
that resolve redundancy before learning. FEL requires the preex-
istence of a feedback controller that is used to provide the required
teaching signals for supervised learning. RMRC uses a forward
model to convert error signals from sensory to motor encodings,
training the inverse model controller in this way. Finally, direct RL
methods rely on appropriate reward signals and suitable represen-
tations. They are able to learn control policies in more complex
environments, but they are rather inflexible because their behav-
ioral policies cannot be easily adjusted to novel goal constellations
or task constraints.

In all of the discussed learning schemes, only one solution is
stored for a particular control problem. Although this solves the
redundancy problem, the approaches lack the flexibility to quickly
adapt to novel task constraints that may change the available set of
actions, action preferences, and spatial or other constraints. For
example, if the usually chosen action is not available any longer
because of, for example, obstacles or a broken limb, then the
discussed approaches do not offer alternative behaviors. Similarly,
if a usually chosen joint movement or joint position is suddenly
highly uncomfortable because of injury, the models are not able to
rapidly compensate.

Instead of storing only a single control policy solution, it can be
advantageous to represent all possible solutions in a control struc-
ture and delay action choice until it is really necessary. If obstacles
or new optimality criteria reduce the appropriateness of formerly
suitable actions, then alternatives would be immediately available.

In the following section, we review computational models that
store multiple solutions for each possible task and resolve redun-
dancy only during action preparation and execution.

Storing Redundancy

The second approach to modeling motor learning is to com-
pactly store many, or even all, possible solutions for an inverse
kinematics problem, such as all redundant arm postures that coin-
cide with a hand end-point location. The currently most suitable
posture may then be immediately selected before action execution.
Similarly, a matching trajectory needs to be chosen that resolves
the redundant possibilities in movement trajectory. These selection
processes should be guided by task-dependent constraints.

Storing redundancy has several appealing features. First, no
teaching or reward signals are necessary, which enable the model
to store one specific solution for the inverse kinematics problem.
Essentially, unsupervised learning is possible. Second, because all
solutions for a problem are stored, the organism is still able to act
goal-directedly if the preferred solution is not applicable. If opti-
mality criteria or reward values change, a complete remapping of
the learned model is not necessary, rather only constraints need to
be adjusted. Third, current findings on biological motor systems
show that biological control systems encode and exploit motor
redundancy to improve control flexibility and efficiency, following
a minimal intervention principle (Latash, Scholz, & Schöner,
2002; Todorov & Jordan, 2002).

In the following sections, we review two rather different ap-
proaches, the mean of multiple computations (MMC) network
(Cruse & Steinkühler, 1993) and the PB theory (Rosenbaum et al.,
1993). Both approaches resolve redundancies for inverse kinemat-
ics problems.

The MMC Network

The MMC architecture models the complete kinematics of the
plant in question (Cruse & Steinkühler, 1993; Cruse, Steinkühler,
& Burkamp, 1998). It solves the inverse kinematics problem (as
well as the forward kinematics problem or any mixed problem) for
arbitrary combinations of desired output values by a very compact
neural network representation.

The neural network dynamics inherent in MMC resolve redun-
dancy iteratively. By fixing some of the network inputs to cur-
rently desired values, the network dynamics cause the network to
shift into one of the states that represent a solution to the posed
inverse problem. Thus, MMC implicitly resolves redundancy by
means of its inherent system dynamics.

Although the structure allows the imposition of novel con-
straints on the controlled arm, such as a desired arm angle or a
desired position, MMC does not necessarily provide the shortest
path, or the least costly path, to a goal state. Rather, the shortest
path is determined by the internal dynamics of the model. Conse-
quently, the exhibited dynamics in MMC are not grounded in the
environment or the body so that the extent to which the inherent
system dynamics reflect body constraints depends on the designer.
Currently, no learning mechanism is available that is based on the
interaction of the MMC and the associated body.
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The PB Theory

On the action selection side, the PB theory (Rosenbaum et al.,
1993, 1995, 2001) is the model closest to SURE_REACH. It
solves the inverse kinematics problem of selecting an appropriate
set of joint angles (i.e., a posture) to move the hand to a desired
location. In contrast to the approaches that resolve redundancy
before learning, the model stores a set of encountered arm postures
during learning. Once a goal is triggered, all postures are evaluated
with a weighting scheme (Rosenbaum et al., 1995) or a constraint
hierarchy (Rosenbaum et al., 2001), which selects the goal posture
on the basis of the elimination by aspects principle (Tversky,
1972).

Constraints, such as collision avoidance, movement accuracy, or
the minimization of travel costs, are ranked hierarchically accord-
ing to the requirements of the current task. The posture that best
satisfies the constraint hierarchy is chosen as the movement end
posture. The chosen posture then triggers the execution of a
controller, which moves the hand toward the chosen posture by
obeying the invoked constraints. For example, if the task requires
a maximally accurate goal position, the posture with the hand
closest to the target is selected, where the Euclidean distance is
then used to measure goal distance. On the other hand, if move-
ment velocity was critical, a posture may be chosen that may be
less accurate but that may specify a less costly angular transition.
Absolute angular displacement in conjunction with optimal tran-
sition times are used to determine travel costs (Rosenbaum et al.,
1995). Additional constraints may be added, for example, to prefer
postures with specific joint angles (Rosenbaum et al., 2001).
Recently, the PB theory was also enhanced to 3-D workspaces by
using a quaternion-based representation to account for (single-
axis) rotations (and their noncommutativity) and the geodesic to
determine the shortest path between two postures (Vaughan,
Rosenbaum, & Meulenbroek, 2006).

To accomplish obstacle avoidance, the full specifications of arm
lengths and angles are used to execute internal forward simulations
to check for obstacle collisions (Rosenbaum et al., 2001). If an
obstacle collision is detected, the trajectory is altered by superim-
posing a back-and-forth movement on the movement to the goal.
Once a suitable superimposed movement is found, the combined
movement is executed, effectively deflecting the arm around the
obstacle.

The PB theory can also generate realistic, bell-shaped velocity
curves, imposing sinusoidal movement speeds on the action exe-
cution scheme of goal approaching and obstacle avoidance (Meu-
lenbroek, Rosenbaum, Jansen, Vaughan, & Vogt, 2001; Rosen-
baum et al., 1995, 2001). Obstacle avoidance was also successfully
applied to the challenge of grasping objects (Meulenbroek et al.,
2001) integrated in the arm approaching movement. These chal-
lenges are not directly addressed in this article but are kept for
future work on the proposed SURE_REACH architecture.

The PB theory emphasizes the resolution of redundancy but not
the motor learning problem. No properties of the stored postures,
which are relevant for the evaluation process, such as the coincid-
ing hand and arm location in space or the transition times from one
posture to another, are learned. What is learned is a set of postures,
which serve as starting points for the search of a posture that
fulfills the current constraints and optimizes current optimality
criteria.

Short Summary

Both of the models discussed in the last section can account for
the resolution of motor redundancies. The MMC allows the invo-
cation of posture and end-point constraints, which are resolved by
the inherent network dynamics. Currently, however, MMC cannot
be trained unsupervised. The PB theory stores a set of experienced
postures and then chooses the currently optimal goal posture on the
basis of weighing or prioritizing constraints. It learns a set of
possible goal postures but not the motor controller or the distance
measures used to resolve redundancies. Besides the incorporation
of additional task constraints, it has been shown that the PB theory
can avoid obstacles by internal trajectory simulation and superim-
posed back-and-forth movements (Meulenbroek et al., 2001;
Rosenbaum et al., 2001). The SURE_REACH architecture intro-
duced in the next section builds on the high flexibility gained by
the PB theory.

SURE_REACH

The survey of related approaches in the previous section shows
that learning architectures resolve motor redundancy either (a)
before or during learning or (b) after learning during action prep-
aration and execution. SURE_REACH belongs to the latter class.
Compared with the MMC model and the PB theory, which also
resolve redundancy after learning, SURE_REACH adds a neural-
based, unsupervised learning architecture that grounds distance
measures in experienced sensorimotor contingencies. The archi-
tecture is implemented as a biologically plausible neural network
model. It extends our previous computational models, which ac-
counted for nonredundant single (Herbort, Butz, & Hoffmann,
2005a, 2005b) or multijoint (Herbort, 2005) arm movements.

SURE_REACH Overview

SURE_REACH is hierarchically structured (see Figure 1 and
Figure 5). The knowledge of SURE_REACH about its body and
environment consists of two population-encoded spatial body rep-
resentations and two associative structures. An extrinsic hand
space encodes hand locations (x–y coordinates) with a uniformly
distributed, partially overlapping 2-D array of neurons. An intrin-
sic posture space similarly encodes arm postures with a uniformly
distributed, partially overlapping 3-D array of neurons (shoulder,
elbow, and wrist angles). A posture memory associates hand with
posture space neurons, encoding an inverse kinematics model. A
sensorimotor model associates postures action-dependently with
each other. It essentially encodes a posture-based body model that
is able to predict which posture is reached given a current posture
and chosen motor command. More important for the purpose of
this study, though, is its inverse capability: The model is also able
to deduce the posture that preceded a given posture given some
action was executed. We refer to this aspect of the model as the
inverse sensorimotor model.

Posture memory and the sensorimotor model are acquired in an
initial motor babbling phase, during which random movements are
executed. During this phase, the posture memory acquires its
kinematic mapping, and the sensorimotor model encodes the ex-
perienced sensorimotor contingencies. We should emphasize that
infant motor behavior is certainly not based on merely random
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motor neuron excitations. The ideomotor learning approach, which
underlies the model, does not require that movements are inten-
tionally directed during learning. More elaborate learning strate-
gies, however, might be used that could account for the goal-
directed reaching and exploration strategies observed in infants
(e.g., von Hofsten, 2004).

During goal-directed movement production, a goal location may
be activated in hand space. The resulting neural activity is prop-
agated into posture space by means of the posture memory, result-
ing in a redundant goal representation in posture space. The
resulting neural activity in posture space is further propagated
within posture space by means of dynamic programming that is
based on the inverse sensorimotor model. The results are posture-
based, action-dependent activation maps that cover the complete
posture space. The activation maps essentially encode the suitabil-
ity of each available motor action at each location in posture space
for reaching the closest activated goal posture. Taken together,
they encode a sensory-to-motor mapping in posture space. Given
the current arm posture, the activation maps provide the motor
actions that lead to the closest goal posture. The trajectory to the
goal posture unfolds in time because of the sensory-to-motor
mapping in combination with a closed-loop control process. Which
goal posture is finally reached consequently depends on two cri-
teria: (a) The posture memory needs to encode that the goal
posture coincides with an activated hand goal location, and (b) the
inverse sensorimotor model needs to encode that the goal posture
lies closest to the current arm location.

The modular, hierarchical encoding enables the flexible impo-
sition of additional constraints on hand space, posture space, and
on the activity propagation that is based on the sensorimotor model
(cf. Figure 5): (a) The chosen population encoding enables the
activation of complex hand location goals; (b) obstacle represen-

tations can inhibit parts of the hand space, causing the arm to avoid
these regions and generate alternative movement trajectories when
the inhibition is propagated through to posture space (see Figure 5,
right-hand side); (c) activated goal-posture representations can be
modified by posture constraints, adding, for example, a preference
for comfortable end postures or accounting for additional joint
angle constraints (see Figure 5, left-hand side); (d) finally, motor
constraints can be imposed onto the activity propagation, which is
mediated by the sensorimotor model, accounting for, for example,
injured joints (see Figure 5, bottom left-hand side).

In the following subsections, the arm and the actual neural
implementation of SURE_REACH are described in detail. First,
the arm that is used to evaluate the model is specified. Next, the
implementation is detailed. Finally, we exemplify how the activa-
tion of goal(s) and potentially additional constraints trigger appro-
priate motor activity. In subsequent sections, we rigorously eval-
uate our implementation of SURE_REACH and show that the
architecture accounts for various behavioral empirical data pat-
terns.

A Three-Joint Planar Arm

The body controlled by the current SURE_REACH implemen-
tation is a three-joint planar arm (see Figure 6). The three limbs
have the lengths l1 � 1.0, l2 � 0.8, and l3 � 0.6. The shoulder and
elbow joints are allowed to rotate within �180°, whereas the wrist
joint is restricted to values between 0° and 180°. Note that shoul-
der and elbow joints, however, cannot circle, that is, no jumps
from �180° to 180° are possible.

Each joint is controlled by two antagonistic actuators, which
cause either a clockwise or a counterclockwise rotation. An array
of motor neurons y� of size y activates the actuators. The activity of

Figure 5. The SURE_REACH architecture is hierarchically structured, associating intrinsic hand space with
intrinsic posture space by an associative posture memory. Both spaces are population encoded. The motor
controller processes arbitrary goal activations in posture space by means of an inverse sensorimotor model to
invoke motor commands, depending on the actual arm state. Additional constraints can be imposed on the goal
representations in posture space, posture subspaces, or the movement preparation process realized in the motor
controller.
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each motor neuron yi lies between zero and one. The actual joint
displacement per time step during the simulation is calculated by
subtracting the activation level of the two antagonistic actuators
and then by multiplying the normalized result with a gain factor g.
The gain factor determines the maximal angular displacement of a
joint in one iteration. If not stated differently, the gain factor is set
to g � 15°. The total number of encoded actuators in the arm is
y � 7: two for each of the three joints and one null actuator. Any
weighted combination of actuators is possible. The null actuator
enables the arm to stay in place.

Of course, the arm lacks the complexity of a human arm, but it
captures two important features. First, the arm has redundant
degrees of freedom so that each desired hand location can be
realized by multiple arm postures, and each arm posture can be
reached by many different action sequences. Second, temporal
relationships have to be considered to control the arm. Most goal
states cannot be reached in one time step by one action command
but require the execution of an action sequence. Thus, although
joint torques and velocities are not modeled, the arm captures the
challenging property that, in general, goals cannot be reached by
the definition of a single set of input values.

Hand and Posture Space

Hand end-point space and arm posture space are represented by
population codes, which cover the spaces with uniformly distrib-
uted, partially overlapping receptive fields. Because of the overlap,
a particular position in hand or posture space is encoded by a
unique activity distribution of those neurons whose receptive fields
overlap with the position.

Hand space is encoded by a neuronal array h� of size h � 21 �
21 � 441, with local activation patterns for each neuron (Atkeson,
Moore, & Schaal, 1997). Each neuron hi of h� fires if the current
hand coordinates (xhand, yhand) are sufficiently close to the neu-
ron’s center (hi

x,hi
y):

hi � max�1.0 �
�xhand � hi

x�
.24

;0�
� max�1.0 �

�yhand � hi
y�

.24
;0� . (1)

This sets the activation of a neuron to 1.0 if the invoked stimulus
coincides with its center.

The centers of the neurons are distributed equidistantly in the
coordinate space. The covered squared area is centered on the
shoulder joint and has a side length of twice the length of the
extended arm (cf. Figure 7). The receptive fields of adjacent
neurons overlap in such a way that the activity of a neuron reaches
zero at the centers of the eight neighboring neurons. The resulting
distance between adjacent neural centers is 10% of the length of
the stretched arm (i.e., .24 arm-length units) because the centers of
the border neurons lie directly on the boundaries of the covered
area (i.e., 2.4 arm-length units from the center in the x or y
direction). Consequently, any location of the hand is uniquely
encoded by the four closest neurons surrounding the location.

The posture space is represented likewise by a neuronal array p�
of size p � 9 � 9 � 5 � 405. The neural receptive fields cover the
entire posture space (360° � 360° � 180°). The consequent
distance between adjacent centers is 45° (again, the centers of the
border neurons lie directly on the boundaries). Dependent on the
current arm posture (�0, �1, �2), each neuron has the following
activity:

pi � �
j�0

2

max(1.0�
��j � pi

�j�
45°

;0), (2)

where pi
�j are the preferred joint angles of each neuron pi. Thus, all

neurons are broadly tuned to 90° wide, overlapping receptive
fields in each dimension. Posture space encodes any possible
posture uniquely by the activities of the eight surrounding neurons
in the 3-D spatial encoding.

Posture Memory

The posture memory encodes the inverse kinematics of the arm.
That is, it learns to associate hand end-point activations with
corresponding, redundant posture space activations. The posture
memory is implemented as a fully connected single layer neural
network, with input arrays of neurons that encode the hand space
(h�) and the posture space (p�). The network weights encode the

Figure 7. The arm is embedded in a 21 � 21 population-encoded hand
end-point coordinate space. The single neurons cover overlapping rectan-
glar areas with pyramidal activity profile.

y0 y1 y2 y3 y4 y5 y6

Figure 6. The three-joint arm is controlled by three pairs of antagonistic
actuators. The actuators are gradually controlled by motor neurons yi.
Additionally, a seventh action exists that has no effect on the arm.
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degree of correlation between postures and hand positions. The
weights are stored in a p � h matrix, WPM. To compute the
appropriate posture-goal activity p�g for a desired hand goal h�g, the
activation of the hand position neurons is propagated through the
neural network as follows:

p�g � WPM � h�g. (3)

To train the neural network, a Hebbian learning rule (Hebb, 1949)
is applied:

WPM(t) � WPM(t � 1) � εp�h�T, (4)

where h�T denotes the transpose of column vector h�. The learning
rate parameter ε modulates the speed of learning. The unsuper-
vised learning rule increases the synaptic weights between neurons
that are active at the same time, associating hand locations with all
corresponding posture encodings.

Note that because hand space and posture space are population
encoded, the joint angles of different postures that match one hand
location are not intermixed. Moreover, the overlapping receptive
fields of the population codes result in an implicit generalization in
posture memory. During training, the neural encoding of any hand
coordinate is associated with the corresponding neural encoding in
posture space. Because of the redundancy of the arm and the
associative learning rule, hand coordinate encodings will be asso-
ciated with progressively larger subspaces in posture space, com-
prising the experienced coinciding arm posture encodings. The
associated posture subspaces may not necessarily be convex or
fully connected.

Sensorimotor Model

The sensorimotor model encodes action-grounded distances in
posture space. It consists of y � 7 action columns. Each action
column is associated with one of the seven motor commands and
consists of a synaptic weight matrix, in which the experienced
sensorimotor contingencies are encoded. During model learning,
an action column learns to associate those postures with one
another that were experienced in (not necessarily immediate) suc-
cession when the encoded action was executed. Thus, the synaptic
weights of each action column correlate contiguous posture en-
codings with each other action-dependently.

Each action column i of the sensorimotor model represents those
correlations in a neural matrix Wi of size p � p (405 � 405 �
164,025), dependent on the amount of executing action yi. That is,
matrix Wi associates successively experienced posture encodings
p�, dependent on the executed actions. To be able to associate more
remote postures with each other, leaky integrator neurons r�i (of
size ri � 405) are implemented in each column i. These neurons
encode traces of previous posture activations. At time t, given that
posture encoding p�(t � 1) was perceived last and y�(t � 1) was
executed, the leaky integrator neural activity r�i(t) is updated as
follows:

r�i(t) � yi(t � 1)p�(t � 1) � �r�i(t � 1), (5)

where � is the activity decay coefficient of the leaky integrator
neurons. The equation causes the columnar leaky integrator neu-
rons r�i to encode a perceptual trace of posture encodings p�, where
the trace depends on the respectively executed motor actions yi.

The associative matrices Wi are again learned by a Hebbian
learning mechanism, which depends on the currently perceived
posture p�(t) and the perceptual trace r�i(t). Figure 8 illustrates the
circuitry used for motor learning in one action column i. Each
weight wi

jk of matrix Wi is updated as follows:

wi
jk(t) � wi

jk(t � 1) � �ri
j(t)pk(t)(� � wi

jk(t � 1)), (6)

where lowercase letters with upper indices indicate particular
values in the weight matrix Wi, the columnar leaky integrator
neurons r�i, and the current posture encoding p�(t). The degree of
weight update is controlled by learning rate �. To prevent the
network weights from growing infinitely high after long training
phases, the upper threshold � is used. The settings of the param-
eters are specified in the Appendix.

Because of the action-dependent perceptual traces in the colum-
nar leaky integrator neurons r�i, action-dependent sensory associa-
tions develop in each action column. The more remote a posture is
from another posture, the weaker the association in matrix Wi will
be due to the discounting factor � of the leaky integrator neurons.
Moreover, matrices Wi will form stronger associations between
posture encodings between which action yi contributes to reach the
one posture from the other posture. Overall, a sensorimotor model
develops that encodes the experienced sensorimotor contingencies
in the matrices Wi.

During learning, motor command y� is purely determined by an
endogenous excitation generator that causes random motor com-
mands and hence random movements. When goal-directed behav-
ior is executed, y� is determined by an action selection process,
which is explained in the following sections.

Motor Controller

The motor controller relies on the sensorimotor model to gen-
erate motor activity. Given a current posture goal activation p�g, the
controller generates a sensory-to-motor mapping in posture space
by means of dynamic programming dependent on the sensorimotor
model. That is, the controller encodes the action that is most
suitable to reach the closest activated goal posture from each

leaky
integrator
neurons ri

motor
activity y*i

weight

matrixWi

Figure 8. During learning, each action column develops a unique weight
matrix (Wi) between successively firing state neurons. The graph visualizes
the taken inverse model learning approach. The columnar leaky integrator
neurons r�i remember an action-dependent, exponentially decreasing trace
of recent posture activities enabling the action-dependent association of
recent postures with the current posture.
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possible posture. Given the sensory-to-motor mapping, the motor
controller operates the arm by means of a closed-loop control
process. Figure 9 shows the neural circuitry for the generation of
a sensory-to-motor mapping and goal-directed action execution in
one action column.

Generation of sensory-to-motor mapping. The sensory-to-
motor mapping is represented by seven columnar posture-encoded
activation maps a�i (of size p). During the generation of the
sensory-to-motor mapping, the activation maps are initialized by
the current posture-encoded goal activity p�g. The initial activity in
the activation maps is then distributed throughout the maps by
means of dynamic programming on the basis of the matrices of the
sensorimotor model Wi. The activation map of the ith action
column a�i is updated by the following equations:

a� i*4 max�	�

�

j�i
a� j

y � 1
� 1 � 
�a� i�, p�g�, (7)

a� i4 a� i* � Wi � a� i*, (8)

where y � 7 is the number of action columns, max is an operator
that computes the entry-wise maximum of two vectors, and 	 and

 are scalar decay factors. The settings of these parameters are
specified in the Appendix. Both the goal-activation pattern p�g and
the action columnar-activation vectors a�i are normalized in each
iteration so that the component values in each vector add up to 1.0.

The two equations iteratively propagate activity inversely within
the columnar posture space encodings starting from the goal-
activation pattern (p�g). Parameter 
 balances the activation prop-
agation within one action column (a�i), with the activation propa-
gation stemming from other action columns (a�j�i). Parameter 	
discounts activation propagation and ensures that activation ceases
when no goal activation is applied. In effect, the activation pattern
in each action column encodes a distance measure in posture space
to the currently activated goal(s), given action i is executed first.
Larger values indicate smaller distances.

The activation propagation process in one action column is
shown in Figure 9. The illustrated goal is to move to the posture
represented by the rightmost goal neuron (degree of activation is
indicated by the radius of the inner solid circle). Let us assume that
the action column is associated to a motor command that usually
moves the arm from the posture encoded by the leftmost neuron to
the posture encoded by the rightmost neuron. In this case, synaptic
weights will form during learning that connect the right neurons to
neighbors on the left. During activity propagation, the goal acti-
vation consequently spreads to the postures on the left, as is
indicated in the activation map a�i in Figure 9. Because the synaptic
weights are not symmetrical and differ in the action columns, a
unique activation pattern emerges in each action column. The
propagation of activity between action columns (cf. Equation 7)
ensures that postures also receive activations that can only be
reached by an extended sequence of different motor commands.
Together, the activation maps of the seven action columns encode
the sensory-to-motor mapping, which is used for action execution.

Action execution. Given the seven activation maps, actions
can be selected for execution by comparing the current activities in
the activation maps a�i(t) with the current arm posture encoding p�(t)
(see Figure 9, bottom). The execution of the chosen action then
results in a change of the current arm posture and the subsequent
generation of the next motor command.

To assess the suitability of the different actions yi given a
particular current posture p�(t), we multiply the current activity of
the activation maps a�i(t) with the current posture encoding:

yi
S(t) � p�(t)Ta� i(t). (9)

Figure 9 (bottom) illustrates the inner product computation depen-
dent on the state of the current posture in one action column. In the
figure, the leftmost neuron of the encoding of the current posture
is active. Thus, only the activity in the leftmost neuron of the
activation map is used to compute action suitability.

The action suitability output is then squared and normalized to
emphasize the suitability of the best current action command:

yi
net(t) �

yi
S(t)2

�
j�0

6 yj
S(t)2

. (10)

The activations of opposing actuators (those that cause antagonis-
tic movements) then cancel each other out. That is,

yi
net*(t) � � yi

net(t) � yj
net(t), if yi

net(t) � yj
net(t);

0, otherwise, (11)

given i and j are antagonistic motor action pairs. Finally, the
resulting absolute activities are normalized to 1.0 and multiplied
by gain factor g:

g

y (t)i
s

noitara

activation
map a*i

activation
map ai

weight

matrix Wi

Figure 9. During movement preparation, an action column propagates
goal activation p�g with its learned weight matrix Wi, combining the activity
with activities from other action columns and sending the propagated
activity to other action columns. The resulting activation map a�i is read out
during movement execution by multiplicative units that determine the
suitability of the motor command that is associated with each action
column dependent on the current posture state. The solid circles inside the
represented neurons indicate an exemplar activation propagation.
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yi(t) � g
yi

net*(t)

�
j�0

6 yj
net*(t)

. (12)

In this way, movement velocity becomes independent from abso-
lute activation levels. The applied normalization procedure worked
well in all experiments conducted for this article. However, in
principle, other or further modifications can be made to generate
the motor commands.

Goal-Directed Motor Control

Figure 10 shows a complete goal-directed movement prepara-
tion and execution process in the implemented SURE_REACH
architecture. The initial goal-activation pattern necessary for the
generation of the sensory-to-motor mapping usually stems from a
hand space goal-activation pattern h�g. This pattern may encode one
particular desired hand location, but it may also encode a whole,
possibly weighted, set of hand locations. The goal-activation pat-
tern is then propagated through to posture space, determining the
posture goal activity p�g by the posture memory matrix WPM (cf.
Equation 3). Alternatively, though, the posture goal activation may
also be set directly by initializing p�g to certain values. Moreover,
the activity of p�g may be modified further by other posture con-
straints.

Given a goal-activation pattern in posture space p�g, the pattern
is diffused by means of the synaptic weights of the sensorimotor
model with dynamic programming, as specified in Equations 7 and
8 above. This results in the sensory-to-motor mapping, encoded
within the seven action maps a�i, necessary for the closed-loop
control of the arm. Finally, arm execution starts by determining an
action command y�, given the current arm posture p�, as described in
Equations 9, 10, 11, and 12. The result is a closed-loop control
process that directs the arm to the closest activated goal posture,
which is determined by the dynamic programming process based
on the encoded sensorimotor model.

As discussed above, to be able to flexibly account for various
task and goal constraints, goal-directed motor control systems need
to store redundant solutions and resolve redundancy on the fly
before and during action execution. SURE_REACH encodes two
types of motor redundancies. First, the posture memory encodes
kinematic redundancies, consequently activating all known arm
postures that coincide with a given goal location. Second, the
inverse sensorimotor model encodes sensorimotor redundancies.
In effect, the model implicitly encodes all possible trajectories to
reach a goal posture from any other posture. Thus, SURE_REACH
knows in principle about all alternative goal postures, given a goal
location, and also how all these alternative goal postures may be
reached.

a0

a6

a5

a4

a3

a2

y6 y5 y4 y3 y2 y1 y0

g

i

goal

g

a1

Figure 10. Goal-directed behavior in SURE_REACH usually begins with a goal activity induction h�g in hand
space (left top). The hand space activity is then transformed into a posture-based goal representation p�g with the
posture memory matrix WPM (inverse kinematics). The goal activity p�g then induces the dynamic programming
process within posture space, which results in the generation of columnar activation maps a�i for each possible
action i. To control a movement, the activities in the activation maps are read out, combining them with the
current posture representation p�. The result is a motor command y�, which causes the movement toward the
activated goal.
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Redundancy is then resolved by means of the dynamic program-
ming process. Essentially, dynamic programming determines all
possible trajectories to the activated goal postures in parallel
within the emerging activation maps a�i. The resulting sensory-to-
motor mapping encodes all shortest trajectories to the closest goal
postures from all possible postures. Through the use of closed-loop
control, the trajectory from the current arm posture is executed.

The population encoding of posture space plus the embedded
sensorimotor model enable the efficient generation of these
sensory-to-motor mappings. In the current iterative implementa-
tion, the effort to generate a mapping from the current state to the
goal is linear in sensorimotor distance to the goal (as encoded in
the matrices Mi) times the (constant) size ( p � p) of the matrices
Mi used during activity propagation (see Equation 8). In a possible
parallel implementation of the dynamic programming process,
effort would be linear times negligible constant effort.

The redundancy resolution process is immensely flexible, en-
abling the imposition of at least four further task constraints, as is
illustrated in Figure 5. First, any type of hand goal-activation
pattern h�g can be imposed, in principle. The dynamic programming
process simply causes movement to that hand goal, which caused
the strongest posture goal activation. If there are multiple similarly
strongly activated goal postures available, the arm will approach
the closest posture. Second, obstacle representations can inhibit the
activation of hand space or posture space subspaces. In the case of
a hand space inhibition, this inhibition has to be propagated
through to posture space, for example, by using the posture mem-
ory. The inhibition can prevent the arm from attempting to reach
certain posture subspaces by setting the activity maps a�i in these
subspaces to zero, causing the dynamic programming process to
generate alternative trajectories around the inhibited subspaces
(possibly reaching an alternative goal posture). Third, additional
posture constraints can be imposed, modifying the goal-activation
pattern p�g. In this way, for example, certain arm postures or joint
angles can be preferred over other postures that coincide with
them. Fourth, additional motor constraints can be imposed. In this
case, the contribution of each action during the dynamic
programming-based activation propagation process (see Equation
7) may be modified, causing SURE_REACH to prefer the execu-
tion of particular actions over alternative ones.

In the following sections, we evaluate the SURE_REACH
model confirming the four types of behavioral flexibility. More-
over, we show that the learning process is robust to parameter
modifications, and, most important, we compare the behavior of
SURE_REACH to available behavioral data from the psycholog-
ical literature. Before we start with the rigorous model evaluation,
however, we give some illustrative examples of trajectory gener-
ation and motor control in the current implementation of
SURE_REACH.

Three Illustrative Examples

The following examples illustrate the motor activation process
in SURE_REACH. We show the activation propagation within the
actual simulation but focus on movements that do not require wrist
motions for visualization purposes. The evaluations in the subse-
quent sections are all conducted on the full three-degrees-of-
freedom arm.

Example: Approaching a Particular Posture

Figure 11A shows a typical activity propagation process in the
SURE_REACH implementation within the described arm, given
one particular goal posture is activated. However, in this illustra-
tive example, the wrist angle does not change from 0° to enable the
2-D representation of the posture space. Figure 11A shows cross
sections (wrist angle is 0°) of activation maps a�i. Columns show
different activation maps. Rows show the maps at different mo-
ments during their generation. White areas are not activated at all;
dark areas are highly activated. The data stems from a well-trained
(unconstrained) model.

Initially, only one particular goal posture is activated in this
example. Next, the activity is propagated. This can be clearly seen
in row t � 1 where, for example, a counterclockwise movement of
the shoulder (left column) coactivates the clockwise space more
strongly, whereas a clockwise movement (second left column)
coactivates the counterclockwise space more strongly. Because of
the leaky-integrator property of neurons r�i during learning, not
only the immediate surrounding is activated after one activation
propagation iteration but also more distant posture subspaces (row
t � 1 in Figure 11A). These far-reaching connections facilitate the
movement preparation process and enable faster movement onset.

The motor commands, which are ultimately sent to the actua-
tors, depend on the activation of the neurons representing the
current state in the different activation maps. Figure 11B shows the
corresponding sensory-to-motor mappings, which are generated
from the activation maps in the seven action columns by applying
the normalization procedure described in the previous section (see
Equations 9, 10, 11, 12). The action columns of the motor con-
troller trigger action activity for many locations in posture space.
However, between some state neurons no synaptic connectivity
may have emerged because they represent very distinct postures,
and the transition time between those postures is high. Thus, the
activation maps for row t � 1 do not nearly cover the entire
posture space. To establish connections between highly remote
postures, activation needs to be propagated further. The activation
maps for t � 2 cover a substantially larger part of the posture
space. After 10 iterations, suitable sets of motor commands are
available for the entire posture space.

Movement can be initialized as soon as the activation pattern
reaches the current arm posture. As the arm posture changes, the
closed-loop control process reads out the activation of the state
neurons and issues motor commands accordingly. Figures 11C and
11D show the resulting movement trajectories in hand space and
posture space, respectively.

Example: Activation Maps With Multiple Goals

So far, we discussed the activation of a single posture. The
activation propagation process can also be initialized with more
than one goal neuron activated. In this case, the sensory-to-motor
mapping does not lead toward a single posture but toward a set of
goal postures. Thereby, each of the postures in the goal set repre-
sents an acceptable final state. In Figure 12A, the goal set is the
solution of the inverse kinematics problem of moving the hand to
a specific location and thereby maintaining a stretched wrist joint
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(see Figure 2A). The sensory-to-motor mapping directs the short-
est path to the goal for all possible arm postures. Furthermore, goal
sets with an infinite number of solutions are possible. For example,
Figure 12B charts the sensory-to-motor mapping to any posture
with stretched wrist and shoulder joints.

Example: Subspace Avoidance

SURE_REACH also makes it possible to avoid (generally)
arbitrary subspaces, consequently realizing, for example, obstacle
avoidance. In the following example, we inhibit neural activity for
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certain postures, effectively disabling the arm to enter some areas
in posture space. In the subsequent evaluations, we also show that
subspaces in end-point coordinate space can be avoided by inhib-
iting neurons in coordinate space and propagating this inhibition
through to posture space by using the posture memory (encoded in
matrix WPM). Note, however, that currently the arm only encodes
its end-point in coordinate space so that it is only possible to
prevent end-point collisions.

Figure 13A shows an example in which the posture space is
constrained, disallowing postures in which the elbow is flexed
when the shoulder is in an angular area between �90° and �90°.
The movement starts with the upper limb pointing downward
(�shoulder � 135°) and a 90°-flexed elbow. The goal posture
requires a counterclockwise movement of the shoulder until the
upper limb points straight down. The elbow and wrist angles in
start and goal posture are identical, but the additional constraint
requires an extension of the elbow during the movement.

The constraint is realized by inhibiting all postures that collide
with the virtual obstacle in the activation maps a�i. The constraint
requires the activation to spread from neurons in the clockwise
elbow rotation action column to neurons in the counterclockwise
shoulder rotation column, as can be inferred from the maps in
Figure 13A. The resulting sensory-to-motor mapping (see Figure
13B) causes substantial changes to the motor commands during
action execution. Figures 13C and 13D show the changes in the
elbow motor commands to avoid the obstacle, first stretching it and
then flexing it again.

Evaluation and Application

After this exemplification of SURE_REACH’s capabilities, we
now systematically evaluate learning and behavior in the architec-
ture on the full three-degrees-of-freedom arm. The evaluation
starts with an assessment of the general learning accuracy of the
model and its parameter dependency. Next, the behavior of the
model is characterized and compared with various behavioral
findings in humans. First, the effects of extensive training on
reaction and movement times are considered. Next, we show that
the dynamics in SURE_REACH exhibit priming effects that are
comparable to experimental data from psychological experiments
(Schmidt, 2002). Finally, it is confirmed that SURE_REACH
benefits from the representation of motor redundancies on the
end-posture level as well as on the trajectory level, exhibiting
behavior in accordance with experimental data (Bock & Arnold,
1992; Cruse & Steinkühler, 1993; Erlhagen & Schöner, 2002;
Fischer, Rosenbau, & Vaughan, 1997; Jaric, Corcos, & Latash,
1992; Soechting, Buneo, Herrmann, & Flanders, 1995).

General Properties

A model that accounts for motor learning and control should
improve during learning and should acquire at least some dexter-
ity. To show this, we evaluate the overall improvement of move-
ment accuracy during learning in SURE_REACH. First, the sen-
sorimotor model and the motor controller alone are evaluated for
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movements toward specific arm postures. Second, the complete
SURE_REACH model, including its posture memory, is evaluated
for movements toward specific hand targets. Finally, to ensure that
the model is robust and does not rely on a fine-tuned set of
parameters, the sensitivity of the model’s performance is tested
with respect to its most important parameters.

Motor Controller

To evaluate the overall properties of the model, we trained 10
controllers individually for 1,000,000 time steps each. The 10
controllers differed in two properties. First, their learning experi-
ences differed because each controller executed a different se-
quence of random motor commands during motor learning. Sec-
ond, the goals generated during evaluation of each controller
differed. During performance tests, each controller had to perform
a unique set of test movements, starting from certain randomly
selected postures, pursuing particular goals. During motor learn-
ing, though, each controller had to perform the identical test
movements after various iterations of training. Thus, variances in
the performances of the controllers reflect both variances that were
due to different learning experiences and variances that were due
to different test movements.

Training began by setting the arm to a random posture. Then, a
random motor command set was generated and changed every one
to four time steps. Each motor neuron was set to 1.0, with a
probability of 0.3 and was otherwise 0.0. If none of the motor
neurons were activated, this procedure was repeated. In each time
step, the neural network weights of the posture memory and the
sensorimotor model were updated. To evaluate learning progress,
we froze the neural network weights and tested the controller.
After a test trial, training was continued from a new random
posture.

To assess the accuracy of the sensorimotor model and the
capabilities of the motor controller alone, we tested each individual
controller in 16 trials to move from randomly selected starting
postures to randomly selected target postures (�0, �1 � [�135°;
135°], �2 � [45°; 135°]). Target posture activity (p�g) was directly
generated, bypassing the posture memory. The controller was
allowed to take up to 80 time steps to reach the activated goal
posture.

The average error of the last 10 time steps of each movement
was used to determine the accuracy of a single movement. The
error was computed by averaging the absolute differences between
the three target and actual joint angles. To assess the accuracy of
a controller, we computed the average movement accuracy and the
worst movement accuracy during a test phase. Figure 14A shows
the average and worst case accuracy of the 10 individual control-
lers. Movement error before training was on average 82.1° (SD �
5.84°). After 1,000,000 steps of training, the average error dropped
to 3.52° (SD � .114°), and the average error of the least accurate
movement of each controller dropped to 4.43° (SD � .314°). The
results confirm that the architecture is capable of reliably moving
the arm with reasonable accuracy to desired postures, considering
the sparse distribution of the receptive fields (45° between adjacent
centers of receptive fields).

Posture Memory

Similar to the evaluation of reaching goal postures, the accuracy
of the whole architecture was evaluated. The error is now defined
by the Euclidean distance between the goal hand position and the
final hand position in percentage of the workspace size (twice the
length of the arm). Each controller had to perform 16 movements
from random start postures to random hand targets. Hand targets
(h�g) were generated by computing the hand position of random
arm postures to ensure that the target was within reach of the arm.
Figure 14B depicts the average and maximal error during learning.
The average error dropped from 36.5% (SD � 7.07%) to 4.73%
(SD � .715%) after 1,000,000 time steps of learning. The average
error of the least accurate movements of each controller was 9.32%
(SD � 2.70%).

The results confirm that the SURE_REACH implementation
can account for accurate goal-directed hand movements. As in the
case of the posture space evaluation above, the remaining error in
final hand location is due to the low resolution of posture and hand
end-point space. Potential solutions to this problem are discussed
below.

Parameter and Training Sensitivity

To ensure that the performance is not bound to a specific set of
parameters or a specific training setup, we systematically varied
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three important factors. First, the random activation generation
procedure applied in the training phase was varied. Either exactly
one random motor neuron was activated or each motor neuron was
activated with a probability of .3 or .5 (repeating the action
activation process, if no action was activated). Second, the joint
angle gain g was set to 11.25°, 15.0°, or 22.5° during learning.
Third, parameter �, which modulates the leak of the leaky inte-
grator neurons, was set to 0.00, 0.10, or 0.50. Ten individual
controllers were trained for each combination of values, and the
performance after 1,000,000 time steps of learning was assessed as
described above except that only the final arm state of a movement
was used to calculate error values.

When the sensorimotor model plus motor controller were tested
alone by activating random, single goal postures, we found little
impact from the parameter variations. A 3 � 3 � 3 analysis of
variance (ANOVA) revealed only a significant influence from the
random activation generation procedure, yielding better results if
more than one action was active at a time, F(2, 243) � 7.46, p �
.01. However, the variation had little impact on absolute perfor-
mance: All average end-point errors ranged between 3.25° (SD �
.370°) and 4.05° (SD � .199°).

When the complete architecture was tested by the activation of
goal coordinates and the successive posture space activation by the
posture memory, a 3 � 3 � 3 ANOVA also revealed a significant
influence from the random activation generation procedure, F(2,
243) � 18.5, p � .01. In this case, better results were obtained
when only one action was applied at a time. For the coactivation
of multiple goal postures, the results indicate that it is slightly
better to learn the sensorimotor model by executing single actions
because the inverse model becomes more uniquely dependent on
each action. Nonetheless, the results ranged between 3.85% (SD �
.686%) and 5.10% (SD � .727%) so that the absolute difference in
error remained small.

In conclusion, the small performance differences suggest that
parameter and training variations only slightly affect model per-
formance. Thus, the architecture does not need a fine-tuned set of
parameters to work, rather it is generally robust.

Effects of Extensive Training

It is a common finding that training not only affects the accuracy
of biological movements, but also that movement times and reac-
tion times decrease (Flament, Shapiro, Kempf, & Corcos, 1999;
Gottlieb, Corcos, Jaric, & Agarwal, 1988; Lavrysen et al., 2003;
Ludwig, 1982). Our model contributes to both findings. First, in
SURE_REACH, the time it takes to initiate a movement decreases
by encoding temporally far-reaching sensorimotor contingencies.
The further reaching the contingencies, though, the longer it takes
to encode them during training. Second, the movement time de-
creases because the sensorimotor model and posture memory
encode progressively more alternative movement trajectories and
goal postures, respectively.

Reduced Reaction Times

For movements to remote goals, the dynamic programming
process requires some time to prepare a movement because move-
ment onset relies on a sufficient spread of activation through the
activation maps (a�i). The time it takes from presenting a target to

SURE_REACH until the activation is spread far enough to initiate
a movement can be considered the latency, or reaction time, of
SURE_REACH. This time decreases during motor learning.

The leaky integrator neurons enable the controller to establish
direct connections between remote situations and goals, thus being
able to replace, or at least enhance, the activation propagation
process. If the parameter �, which specifies the leak of the leaky
integrators, is set to zero, only associations of state neurons that are
activated in subsequent time steps are learned. In this case, it is
impossible to learn far-reaching connections. The higher �, the
more far-reaching connections will be learned and the faster action
execution is initiated.

To confirm this, we trained three groups of 10 individual con-
trollers for 1,000,000 time steps, with the leaky integrator set to
� � 0.00, � � 0.50, and � � 0.80, respectively. The test procedure
for movements to different postures was applied. Only the final
arm position was used to compute the error value. After 10,000
time steps of training, all controllers were trained well enough to
be able to initialize movements to all given goals.

Figure 15A shows that a high value of � causes on average a
significantly decreased movement latency after 1,000,000 time
steps of learning (for � � 0.00: M � .663, SD � .145; for � �
0.50: M � .356, SD � .179; for � � 0.80: M � .113, SD � .0922),
F(2, 27) � 36.9, p � .01. Furthermore, if � is set to 0.50 or 0.80,
the movement latency progressively decreases during learning.
Pairwise t tests revealed that a significant decrease is even detect-
able between the final two test periods, that is, after 105 and 106

time steps of learning (for � � 0.50: M � .0438, SD � .0593,
t(9) � 2.33, p � .05; for � � 0.80: M � .0250, SD � .0323, t(9) �
2.45, p � .05). On the other hand, if � is set to zero, the decrease
of movement onset time ceases completely after 100,000 time
steps of learning.

Despite the variations of parameter � and the consequent dif-
ferences in the connectivity within the inverse models, no signif-
icant impact on the average end-posture accuracy was detectable
(for � � 0.00: M � 3.71°, SD � .417°; for � � 0.50: M � 3.54°,
SD � .227°; for � � 0.80: M � 3.85°, SD � .471°), F(2, 27) �
1.64, p � .05. The results confirm that the leaky integrator neurons
enable the inverse model to associate far-reaching arm postures.
Movement latency is significantly reduced with extensive training
without affecting the accuracy of the reaching movements. Hence,
SURE_REACH accounts for the empiric finding that movement
latencies or reaction times decrease during motor learning.

Improved Movement Times

Besides a reduction of the reaction time, training also reduces
the time needed to move to a goal. In the model, two factors are
responsible for this effect. First, during training, the inverse kine-
matics model learns more and more postures that coincide with
particular hand locations. A well-trained posture memory provides
a broader goal-posture activity (p�g). It is likely that at least some
of the postures activated in the broader goal activity are closer to
the starting position than any posture in a smaller subset. Hence,
movement transitions get faster on average.

Second, the representation of sensorimotor contingencies gets
more reliable during training and covers bigger parts of posture
space. Because the determination of the motor commands depends
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on the learned inverse sensorimotor model, more suitable motor
commands are generated after longer learning periods.

To show the influence of training on movement time, we rean-
alyzed the data of the previous section. Each controller had to
perform identical movement tasks after varying amounts of learn-
ing. Only movement times from movements that did arrive at the
target (distance from hand to target lower than 15% of the work-
space size) were compared. For each run, the targets were divided
into four groups: those targets that were reached after 103.5 learn-
ing iterations (16.3% movements total), those that were reached
after 104 (19.2% movements total), those that were reached after
104.5 (29.6% movements total), and those that were reached after
105 learning iterations (29.4% movements total). The remaining
5.6% movements required more than 105 learning iterations and
were not included in the analysis. Because parameter � had no
significant impact on movement times, all controllers were eval-
uated independent of this factor. Figure 15B depicts the develop-
ment of average movement times for the four groups of move-
ments. On average, when a movement is successful for the first
time, it takes longer (M � 15.7, SD � 2.21) than it does after
complete training (M � 12.4, SD � 1.50), t(29) � 10.8, p � .001.
Both the development of posture memory and the sensorimotor
model contribute to the decrease of movement time. On the one
hand, the average distances of the movement in joint space (d2
norm) decrease from 186° (SD � 19.2 to 180°, SD � 20.6),
t(29) � 8.06, p � .001. This shows that the posture memory
activates end postures that are closer to the goal after complete
training compared with those of not fully trained controllers. On
the other hand, a similar analysis of the movement for the senso-
rimotor model alone reveals that movement times also decrease,
comparing first successful movements (M � 11.0, SD � 0.868)
with completely trained movements (M � 10.0, SD � 0.752),
t(9) � 6.11, p � .001. This shows that because of the increase of
both, the accuracy of posture memory and the sensorimotor model,
movement times decrease during training.

Priming Effects on Movement Execution

Movement preparation and execution often depend on environ-
mental stimuli. Reactions to external stimuli can be facilitated to
some degree if primes precede the stimulus that affords a reaction.
The influence of these primes on action execution has been exten-
sively studied, mainly with choice reaction time tasks (Dehaene et
al., 1998; Kunde, Kiesel, & Hoffmann, 2003; Vorberg, Mattler,
Heinecke, Schmidt, & Schwarzbach, 2003).

Continuous movements also have been studied in this context.
Participants in an experiment by Schmidt (2002) were shown a red
and a green target at opposing directions from their resting index
finger. As soon as these targets appeared, they had to point as
quickly as possible to the target with a specific color. For example,
a participant could be instructed to point to the red target. How-
ever, 10 ms to 60 ms before the actual targets appeared either
congruent or incongruent primes were displayed for 10 ms. In the
congruent case, the primes appeared at the same locations and had
the same color as the actual targets. In the incongruent case, the
primes appeared at the same locations as the actual targets but with
switched colors.

The movement trajectories of incongruently primed targets
clearly showed a short motion in the wrong (i.e. primed) direction
before this error was corrected and the trajectories approached the
actual target. The extent of the motion in the wrong direction was
significantly larger if the incongruent primes were shown longer
before the targets appeared (longer stimulus onset asynchrony
[SOA]). The primes were replaced by the targets for at least
approximately 200 ms before movement onset. The results were
explained by assuming that, as soon as the primes were visible,
they contributed to the generation of a response until the target
appeared, thus causing initially misguided movements in the in-
congruent case.

SURE_REACH accounts for these effects. We simulated
priming of different durations by preactivating the activation
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maps for one to five time steps with a congruent or incongru-
ent target posture, without actually executing the movement
(targets: stretched arm, �elbow,wrist � 0, with shoulder either
�shoulder � �90° or �shoulder � 90°, movements started from
�shoulder,elbow,wrist � 0°). Then the primes were replaced by the
targets and the movement was initialized. To measure the extent
of movements in the wrong direction, the maximal Euclidean
distances between the hand coordinates associated with the goal
posture (�2.4, 0), and the hand coordinates during each move-
ment were assessed. The movements were executed by 10
controllers that were individually trained for 1,000,000 time
steps. To enhance the effect, we increased the inertia of the
dynamic generation of the sensory-to-motor mapping by
slightly increasing parameter 	 to .48 (see Equation 7) and
seting gain factor g to 6°.

Figure 16A shows the distance between the hand and the actual
target during the movement. Shown are average performances of
10 controllers in both movement directions. If the prime is con-
gruent, the arm moves monotonously toward the target. However,
if the prime is incongruent, an initial movement in the wrong
direction is made. As in Schmidt’s (2002) experiment, the extent
of this movement depends on the duration between prime onset
and the onset of the actual target (SOA). Figure 16B plots the
average maximal distance of the movements against different
SOAs for the incongruent case. A one-way ANOVA revealed a
significant main effect for the SOA, F(4, 45) � 42.2, p � .01.

To summarize, the population-encoded space representation is
suitable to model preparatory effects of movements. The model
accounts for the preparation of movements, once a goal is selected.
Moreover, priming effects that alter the encoded goal representa-
tions can be simulated because of the neural network dynamics.

Benefits of Memorizing Kinematic Redundancy

One of the claimed advantages of storing multiple solutions for
a single goal is enhanced behavioral flexibility. To test this flex-
ibility, we now constrain the joint angle space to examine whether
SURE_REACH benefits from storing redundancy at the kinematic
level. We show that, as is observable in humans, the final posture
of a movement depends on the starting posture.

In human hand movements, the final arm posture that places the
hand at the target location is dependent on the starting posture
(Cruse, Brüwer, & Dean, 1993; Fischer et al., 1997; Jaric et al.,
1992; Soechting et al., 1995). This exploitation of kinematic re-
dundancies seems to minimize movement costs (Fischer et al.,
1997).

The posture memory activates sets of postures that all realize a
desired hand position. If this redundancy is beneficial, the control-
ler should exert the shortest possible path in joint angle space to
reach a goal location. Less direct but still accurate movements
should be triggered if additional constraints apply.

We trained 10 unconstrained individual controllers with the
procedure described above and tested each controller in five dif-
ferent scenarios. In the first one, there were no constraints except
for the targeted hand location. In the second and third scenarios,
besides the targeted hand location, the desired shoulder angle was
set to 0° and 45°, respectively. In the fourth and the fifth scenarios,
besides a desired hand position, the desired elbow angle was set to
0° and 45°, respectively. During each test phase, 16 movements
were made toward random goals, but only movements toward
goals that could be theoretically reached with the given constraints
were included in the evaluation. The additional constraints were
imposed by inhibiting all neurons in posture memory output (p�g)
that did not satisfy the joint angle constraints.
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Figure 16. A: The average distance to the actual target of 10 different controllers after a congruent (lower line)
or an incongruent (top three lines) prime. The effect of the incongruent prime is altered by the duration between
the onsets of the prime and the actual target (stimulus onset asynchrony; SOA). B: The maximal Euclidean
distances from the target for movements with incongruent primes increases with the SOA. Error bars show
standard deviations.
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Figure 17 shows the distribution of shoulder, elbow, and wrist
angles when the goal was reached. The desired joint angle con-
straint is met selectively for each condition (with a standard
deviation of � 45° for each constraint). Furthermore, the controller
uses a broad variety of final joint angles in the unconstrained joints
to reach the activated goal location, indicating that the architecture
effectively exploits redundancy.

To determine whether fulfilling constraints comes at a price, we
also compared the hand position accuracy and movement duration
for constrained and unconstrained movements. Figure 18 shows
the development of movement duration and error after various
amounts of learning. Movement duration is only charted from
100,000 trials of learning because this is the first time that all
controllers were able to finish all required movements. After
1,000,000 time steps, there was no difference in average hand
position accuracy between constrained (M � 4.77% of the work-
space size, SD � .835%) and unconstrained (M � 4.56%, SD �
.791%) movements, t(18) � .591, p � .05. On the other hand,
movement durations differed significantly. The movement dura-
tion is measured as the number of time steps used from the first
change of the posture until the hand moves closer than 15% of the
workspace size to the goal. After 1,000,000 time steps of learning,
the average movement time of an unconstrained movement was
6.44 steps (SD � 1.79). Constrained movements were significantly
slower (M � 16.6, SD � 6.51), t(10.4) � 4.75, p � .01.

Each hand target in the previous evaluation was approached
from two different random starting postures in order to allow an
analysis of start-posture dependency. For movements with the
same hand target but different starting postures, we compared the
final postures of the movement (d2 metric). On average, the end
postures of unconstrained movements differed by 111° (SD �
56.3°). For the constrained movements, the average posture dif-
ference was 70.9°(SD � 49.2°). Constrained movements could
still express a high amount of start-posture dependency because

some targets could be realized by moving one joint to one extreme
or the other and because not all constraints were exactly met. Both
values differ significantly from zero and from each other (from
zero for unconstrained movements, t(9) � 6.22, p � .001; from
zero for constrained movements, t(9) � 4.56, p � .001; from each
other [pairwise t test], t(9) � 3.32, p � .01).

The data confirm two important claims. First, the capability to
store and process many possible arm postures for single goal
coordinates enables SURE_REACH to flexibly incorporate new
task-dependent constraints. For example, a goal that requires the
hand to reach a certain position while maintaining a specific elbow
angle can be easily pursued by our model—even if this task has
never been explicitly trained. Second, the significant difference in
movement times reveals that the sensory-to-motor mapping in-
duces more efficient movements if it is activated by a larger set of
acceptable goal postures (encoded in p�g). SURE_REACH exploits
the redundancy provided by a larger goal set, reaching the desired
goal locations faster because the posture within the goal set that is
closest to the starting posture is approached. These findings fit well
with current behavioral data from human participants (Cruse et al.,
1993; Fischer et al., 1997; Jaric et al., 1992; Soechting et al.,
1995).

Benefits of Memorizing Sensorimotor Redundancy

In the last section, we demonstrated that the representation of
kinematic redundancy significantly enhances the flexibility of the
controller. In this section, sensorimotor redundancy is exploited to
adapt to obstacles, different movement costs, and immobilized
joints.

Obstacle Avoidance

The previous section shows that the end posture of a movement
can be influenced by additional constraints. It illustrates that the
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redundancy of postures associated to a hand position can be
exploited to choose from among alternative goal postures, consid-
ering additional constraints.

Another form of motor redundancy resolution lies in the trajec-
tory generation by means of dynamic programming. If an obstacle
blocks a certain area in posture space, the activity in the associated
neural subspace may be inhibited consecutively. Thus, the activa-
tion diffusion by means of dynamic programming generates an
alternative trajectory that circumvents the obstacle. However, ob-
stacles are usually seen before movement onset and are repre-
sented in an extrinsic coordinate frame. In SURE_REACH, an
extrinsically represented obstacle can be transformed into an ob-
stacle representation in posture space by the posture memory (see
the right-hand side of Figure 5). Because the posture memory
activates all arm postures that realize certain hand positions, feed-
ing the complete extrinsic obstacle representation into the posture
memory results in a representation of all those postures for which
the hand would collide with the obstacle. For now, the posture
memory only activates those postures that coincide with certain
hand locations so that it is only possible to avoid hand collisions
but not collisions of other body parts. A more general posture
memory that not only maps from certain hand locations to postures
but also determines arm postures that coincide with any other point
on the arm could be used to extend obstacle avoidance to the entire
arm.

To evaluate the current obstacle avoidance capability, we
trained 10 individual controllers for 1,000,000 time steps and
tested each of them in two different tasks (see Figure 19). In each
task, obstacles had to be avoided. Obstacles were defined in hand
space. A hand space obstacle representation was generated by
inhibiting neurons whose preferred values were within the obsta-
cle. This inhibition was passed through to posture space by means
of the posture memory, consequently inhibiting those neurons in
posture space that collide with the obstacle. We chose to inhibit all
neurons (set to zero activity) in the activation maps (a�i) that had an
activation level of at least .01, stemming from the inhibition passed
through posture memory.

In the first task, the arm had to move the hand to the lowest
position in the workspace (open circle in Figures 19A and 19B)
from an upward pointing posture. This goal can be pursued by two

different movements. The arm can be rotated either clockwise or
counterclockwise. In two different settings, either the clockwise or
counterclockwise movement was blocked by a square obstacle
placed next to the shoulder. Figures 19A and 19B show the
movement trajectories of 10 individual controllers. Each controller
avoided the obstacle by rotating the shoulder joint in the unblocked
direction.

In the second task, the controllers had to move the arm to a
stretched posture with a shoulder angle of �225°. The initial
posture was a stretched arm, however with a shoulder angle of
225°. If no obstacle was in the way, the controller rotated only the
shoulder joint (see Figure 19C). In a second condition, a ceiling
obstacle was introduced that would cause a collision if the hand
location was too close to the ceiling. In this case, the controller
bent the other joints in order to reduce the height of the extended
arm and thus forced the hand to move beneath the obstacle (see
Figure 19D). After the obstacle was passed, the arm restretched the
joints to reach the desired end-point position. The highest hand
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locations of the trajectories (M � 1.40, SD � .0563) were signif-
icantly lower when an obstacle was present compared with those
with unconstrained movements (M � 2.39, SD � .00626), t(9) �
�58.7, p � .01. The figure shows that all trajectories slightly
moved through areas of hand space that were part of the obstacle.
These collisions result from the broad tuning of the state neurons’
receptive fields and could be avoided by a larger set of neurons
covering the hand and posture spaces or by a further reaching
inhibition, which would trigger even stronger obstacle avoidance.

To summarize, obstacle avoidance behavior can be incorporated
into SURE_REACH by the inhibition of neurons. This capability
is due to the fact that the inverse sensorimotor model of the motor
controller implicitly stores all possible trajectories to a particular
goal position and that the posture memory can be readily used to
convert an obstacle representation from a hand-based to a posture-
based representation. Without any obstacle-based constraints, the
sensorimotor model triggers the most direct trajectory in posture
space. If such a trajectory is blocked because of, for example,
obstacle-originated inhibitions, supplementary links induce effec-
tive, obstacle-avoiding control. As obstacle avoidance is based on
the sparsely encoded posture representation, the current model can
only account for the avoidance of larger obstacles and goals that
are sufficiently distant from obstacles. However, a more fine-
grained neural encoding might also enable the avoidance of
smaller objects and closer goal and obstacle locations.

Reduced Joint Mobility

During life, the costs of moving certain limbs might suddenly
change. For example, arthralgic patients suffer severe pain from
moving a specific joint and hence have to achieve certain behav-
ioral goals while trying to move one joint or the other as little as
possible. If a joint is in a cast, some motions not only might be
costly but also might be suddenly impossible. Despite this impair-
ment, patients can usually control their arm accurately and effec-
tively with the remaining mobility. SURE_REACH can account
for this flexibility, limiting the extent to which some actions are
applied by reducing the impact of those actions on the activation
propagation process. This adjustment might be considered a neural
implementation of the adjustment of movement cost functions
proposed by Rosenbaum et al. (1995). It was simulated by enhanc-
ing Equation 7 as follows:

a� i*4 �imax�	�

�

j�i
a� j

y � 1
� 1 � 
�a� i�, p�g�. (13)

The difference between Equations 7 and 13 is that in the former,
all actions contribute equally to the activation propagation process,
whereas in the latter, the contribution of each action is weighted
according to a weighting coefficient vi. By adjusting coefficient vi,
the extent to which certain actions and hence certain joint motions
are executed during a movement can be regulated. A larger coef-
ficient vi means relying more on the associated action.

An Arthralgic Joint

Figure 20 shows examples of movements that result from the
modified activation propagation process. Whereas Figure 20A
displays a normal unconstrained movement, Figures 20B and 20C

show movements in which the contribution of the actions affecting
the elbow and wrist joint have been reduced to 1% of the contri-
bution of the remaining actions. It is apparent that all joints are
used in the unconstrained movement but that the motions of the
elbow or wrist joint, respectively, are highly reduced in the other
examples.

To determine whether this process also holds in the general case,
we trained 10 controllers individually for 1,000,000 steps. Each
controller had to perform movements from 16 different start pos-
tures to different goals provided in hand space. For each of the 16
start–goal pairs, one normal movement and three movements with
a reduced desired contribution of the shoulder, elbow, or wrist
were executed. For normal movements, all actions contributed
equally to the activation propagation process. For movements in
which a reduced motion of a specific joint was desired, the vis for
actions associated with that joint were set to 1% of the vis of the
remaining actions. For example, if the wrist joint should move as
little as possible v0 � v1 � 0.01 and v2 � . . . � v6 � 1.00, the
contribution of each joint to a movement was operationalized as
the absolute difference between its start angle and final angle. The
contributions were averaged for each controller, each of the four
movement conditions, and each joint. Start–goal pairs yielding
movements that did not move as close as 15% of the workspace
size to the goal within 160 time steps in at least one of the four
conditions were removed from the evaluation (48.8%). Figure 20
shows the results. It can be seen that the contribution of each joint
angle is reduced selectively for the desired joint. Pairwise t tests
confirm this finding (normal arm: Mshoulder � 69.1°, SDshoulder �
49.1°; Melbow � 66.5°, SDelbow � 48.7°; Mwrist � 60.2°, SDwrist �
44.5°; shoulder: M � 32.5°, SD � 28.2°, t(9) � 15.7, p � .01;
elbow: M � 26.5°, SD � 25.2°, t(9) � 17.2, p � .01; wrist: M �
24.0°, SD � 22.5°, t(9) � 16.4, p � .01).

Thereby, the final position error is only slightly larger for
movements with reduced joint motions for normal movements
(M � 4.00% of the workspace size, SD � 0.427; for constraint
movements, M � 4.67%, SD � 0.443, t(9) � 5.216, p � .01).
Motion of the impaired joint is not reduced to zero because many
movements require a transition of all joints in order to move to the
goal. Note that the reduction of the contribution of an action to the
action propagation process does not inhibit the action per se. It is
only when other actions can be used to fulfill the given goal that
the inhibited action will not be executed.

A Broken Arm

Sometimes it might be necessary to move the arm without the
capability of relying on the complete action repertoire that was
available during motor learning. This may be the case if the arm is
broken and in a cast. Usually used action sequences will then be
fruitless if they rely on actions that are now impossible. Experi-
ments with human participants show that constraining one limb
hardly affects the capability for accurate movements and does not
require exhaustive relearning (Robertson & Miall, 1997).

To verify that the reduction of the contribution of formerly
performable actions to the activation process can be used to control
an arm with a joint in a cast, we trained 10 controllers individually
for 1,000,000 steps to perform reaching movements with either
normal mobility or with the shoulder, elbow, or wrist joint angle
set to �i � 0, regardless of the actions that were executed. The vi
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values for actions associated with joints in a cast were set to v
joint in

cast � 0, whereas all others were set to vfree � 1.0. To compare the
different conditions, we averaged and compared the end-point
error of all reaching movements with random goals that could be
theoretically reached in all movement conditions (on average 12.6
per controller) by pairwise t tests. The end-point error for free
movements was (M � 3.54% of the workspace size, SD � 0.659).
Movements with the shoulder or wrist in a cast were only some-
what less accurate (for shoulder: M � 8.08%, SD � 2.40, t(9) �
5.72, p � .01; for wrist: M � 6.70%, SD � 0.861, t(9) � 11.22,
p � .01). Fixing the elbow did not affect average accuracy (M �
3.24%, SD � 0.724), t(9) � �1.118, p � .05.

To summarize, the activation propagation process can be mod-
ified by weighting each joint movement. On the one hand, joint
movements that cause pain or are otherwise costly can be replaced
by movements of the other joints (as long as this is possible). On
the other hand, the modification can be used to control the arm if
certain joint movements are suddenly impossible. In either case, it
is not necessary to relearn the sensorimotor mapping of the arm.

Summary of Results

The evaluations of our particular implementation of
SURE_REACH confirmed several interesting model features. The
overall reliability and accuracy of the model was high despite the
rather sparse representation of postures and end-point coordinates.

Model learning was stable under several different learning and
parameter conditions.

As a model for motor learning and control, SURE_REACH
revealed several properties. First, during human motor learning,
accuracy increases and movement times and reaction times de-
crease. The model not only accounts for increasingly accurate
movements, but also exhibits that training decreases movement
preparation and movement execution times. Second, representing
goals by population codes is in line not only with neurophysio-
logical data but also with psychological findings and theories
(Erlhagen & Schöner, 2002; Flash & Sejnowski, 2001). In contrast
to many other models of motor learning and control, which can
only process a single target posture or hand location,
SURE_REACH can account for more complex target representa-
tions, such as the target activation of multiple alternative postures.
Likewise, human participants and primates are able to partially
prepare movements toward subsets of movement directions or
distances (Bastian, Schöner, & Riehle, 2003; Bock & Arnold,
1992). Third, a priming experiment was replicated by means of the
space representation and network dynamics. Fourth, it was dem-
onstrated that representing kinematic redundancy enables the sim-
ulation of some features of the flexibility of human motor control.
In humans, the final arm posture of a movement depends on the
starting posture (Cruse et al., 1993; Fischer et al., 1997; Jaric et al.,
1992; Soechting et al., 1995). Also in SURE_REACH, movements
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to the same hand position differ, depending on the starting posture.
Finally, because of the encoded sensorimotor redundancy in the
sensorimotor model, SURE_REACH is able to adapt quickly to
novel task constraints. The architecture is able to avoid obstacles
and recruit alternative actions, given that previously optimal ac-
tions are suddenly costly or even impossible. Together, the eval-
uations show that the encoding of motor redundancies on many
levels enables the simulation of flexible human motor behavior
that cannot be accounted for by models that strive to resolve
redundancy before learning.

Discussion

Our implementation of SURE_REACH has shown interesting
learning capabilities and robust performance. Learning started
from scratch without any prior information, except for the general
modular architecture and the uniform population-encoded repre-
sentation of hand and posture space. SURE_REACH extends or
complements the capabilities of previous learning models. We
showed that SURE_REACH can solve the redundancy problem
flexibly online and can easily incorporate additional task con-
straints. In the following discussion, we first reevaluate
SURE_REACH’s adaptive solution of the redundancy problem,
comparing it with the available literature. Next, we put
SURE_REACH into a broader perspective, suggesting that similar
architectures and representations are used in primates and humans.
We support this claim with neurophysiological findings. We end
the discussion with the current limitations of the model and pos-
sible extensions.

Relations to Previous Models

Having described and evaluated our model, we now pinpoint the
contributions of SURE_REACH with respect to other adaptive
motor control models.

FEL

SURE_REACH learns motor control bottom-up, starting with
the formation of basic sensorimotor contingencies. Hence, our
model addresses a different topic than does the cerebellar models
of FEL (Berthier et al., 1993; Kawato et al., 1987). These models
address how the cerebellum acquires a fine-tuned, fast, inverse
sensorimotor model for reaching movements by learning and fi-
nally substituting cerebral motor commands. In this perspective,
SURE_REACH might be a model of the cerebral source of the
motor signals in FEL, or it might be complemented by FEL to
smooth behavior execution with a modular architecture similar to
hierarchical MOSAIC (Haruno et al., 2001; Haruno, Wolpert, &
Kawato, 2003).

DIM and RMRC

SURE_REACH extends models that implement DIM and
RMRC techniques in two ways. First, the temporally weighted
association mechanism in the action columns and the dynamic-
programming-based activation propagation process results in ef-
fective associative representations. It enables the linkage of poten-
tial goal states to temporally remote actions and initial condition.
Second, and more important, the unsupervised learning method

enables the representation and flexible online resolution of motor
redundancy. Hence, unlike DIM and RMRC approaches,
SURE_REACH is able to exert effective flexible control in redun-
dant contexts, offering a new level of behavioral flexibility.

PB Theory

SURE_REACH is able to resolve redundancy online and under
varying constraints, similar to the PB theory (Rosenbaum et al.,
1993, 1995, 2001). In direct comparison to the PB theory, it adds
four novel features. First, no distance measures need to be pro-
vided to enable goal-posture selection in SURE_REACH. Distance
measures are learned from experience within the inverse sensori-
motor model. They are sensorimotor grounded. Second,
SURE_REACH enables online redundancy resolution, as does the
PB theory. However, SURE_REACH can incorporate additional
task constraints such as blocked paths that are due to obstacles
immediately during redundancy resolution. Such task constraints
can be incorporated by both multiplicative inhibition or excitation
of both neural activity or activity propagation. Third,
SURE_REACH is implemented in a biologically plausible neural
network. Finally, SURE_REACH not only resolves redundancy in
posture and trajectory selection, but also interactively executes
trajectories by closed-loop control. This enables SURE_REACH
to account for novel task constraints (such as the occurrence of a
new goal) during movement production.

Nonetheless, the PB theory still has much to offer
SURE_REACH. First, the PB theory also accounts for typical
velocity profiles in reaching arm movements. By the imposition of
a sine function for movement execution, realistic, bell-shaped
velocity profiles are generated. They are also used in obstacle
avoidance consequently generating typical, bell-shaped avoidance
patterns (Rosenbaum et al., 1995). Such sinusoidal activation
patterns may also be added to the SURE_REACH control process.
This might be possible by modifying the gain factor g during
motor activity generation (see Equation 12), similar to the force
modulation proposed in Bullock, Cisek, and Grossberg (1998), to
the neural time-base generator proposed in Tanaka, Tsuji, Sangui-
neti, and Morasso (2005), or to the PB theory approach. The
addition of smoothness constraints on motor activity execution
may result in more realistic movement patterns (Flash & Hogan,
1985; Todorov, 2004).

Moreover, additional challenges such as grasping (Meulenbroek
et al., 2001) or tool use were not further investigated. Meulenbroek
et al. (2001) implemented grasping mechanisms concurrently to
arm approaching on the basis of the PB theory. An integration of
this grasping mechanism into SURE_REACH with appropriate
adjustments seems possible. In this respect, the addition of a
population-encoded hand-surround space may enable the desired
obstacle avoidance behavior for grasping. Tool use has been
shown to actually result in a temporally expanded body space
encoding of hand end-points (Maravita, Spence, & Driver, 2003),
so a similar encoding within the SURE_REACH approach could
trigger comparable behavioral patterns.

RL

The generation of sensory-to-motor mappings by dynamic pro-
gramming in SURE_REACH is similar to indirect (model-based)
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RL approaches (Sutton, 1990; Sutton & Barto, 1998). From the RL
perspective, posture goals in SURE_REACH are similar to a
particular reward scheme imposition in RL. The sensorimotor
model corresponds to the model of the environment, which is
necessary to enable indirect RL. The generation of the sensory-to-
motor mappings based on a given posture is accomplished by
synchronous dynamic programming (cf. Barto, Bradtke, & Singh,
1995). Thus, SURE_REACH learns optimal behavioral policies
immediately before action execution by the application of dynamic
programming. The application of dynamic programming concur-
rently to action execution was successfully applied in the simula-
tion of the priming experiment shown above. Further advanced
concurrent dynamic programming techniques are certainly imag-
inable. For example, real-time dynamic programming techniques
(Barto et al., 1995) or prioritized sweeping (Moore & Atkeson,
1993) could be applied, which focus their internal value updates on
the currently most important subspaces.

However, SURE_REACH differs rather strongly from the direct
RL approaches for arm control discussed above (Berthier, 1996;
Berthier et al., 2005). These approaches learn a behavioral policy
directly without learning a model of the environment. Generally,
direct RL approaches may be superior policy learners if no model
is available or if learning a complete model requires too much
effort. If a model can be learned and represented efficiently,
though, dynamic programming and other indirect RL approaches
are usually more flexible than are direct RL approaches. This is
because the model can be used to adjust behavioral policies on the
fly to novel task constraints, such as changing goals and goal
priorities, path blockages, or trajectory constraints, without the
need to execute actual actions in the environment. Although more
suitable representations and extensive training may also make
direct RL behaviorally more flexible, the consequently blown-up
policy representations and the additionally necessary training ef-
fort can be expected to yield a mediocre learning system though
most likely still not reaching the flexibility of indirect RL ap-
proaches.

Population Encodings

An early self-supervised control approach can be found in Mel
(1991), who also tackled the problem of redundant robot arm
control with population encodings. However, because each dimen-
sion of joint angles was encoded separately, dynamic program-
ming was not applicable and heuristic search had to be used to
avoid obstacles. Besides the posture state representation, an in-
verse differential kinematics representation was also used to en-
code joint movements toward any direction in external space
posture-dependently. Such a representation might be very well
added to the current SURE_REACH architecture so as to activate
direction goals besides the currently possible hand location or
posture goals.

Other approaches that implement motion planning in joint space
and project obstacle representations into that space can be traced
back to Lozano-Perez (1981, 1987). However, Lozano-Perez
(1987) had to use A* search5 to find an optimal path through the
joint space (termed configuration space) while avoiding obstacles.
Another related approach that does not require A* search uses
harmonic functions to generate suitable trajectories through a state
space for robot control (Connolly & Grupen, 1993).5 In addition,

the harmonic function approach allows the inhibition of problem
subspaces and the emergent avoidance of obstacles, as applied, for
example, for collision avoidance in the interaction of two robots
(Souccar & Grupen, 1996). The dynamic fields approach for
redundant arm control, introduced in Morasso et al. (1997), builds
representations that are comparable to harmonic functions. Both
representations have similarities with the sensory-to-motor map-
pings generated in SURE_REACH. However, though both resolve
redundancy within their respective applications, to our knowledge,
neither approach addresses the problem of learning sensorimotor-
grounded distance representations in joint space (the learned sen-
sorimotor model in SURE_REACH). Rather, both approaches
assume that the nearest neighbors are connected with Euclidean
distance measures.

Toussaint (2006) recently published an adaptive behavior ap-
proach that learns sensorimotor-grounded distance measures
within local receptive fields and that uses these to generate move-
ment trajectories. During the learning phase, the architecture dis-
tributes a growing neural network grid in a maze environment,
randomly exploring the environment. The grid is used to represent
the space, and the action-dependent connections between grid
nodes represent the sensorimotor contingencies inside that space.
The representation was successfully applied to generate goal-
approaching behavior. However, Toussaint addressed neither the
redundancy resolution problem (no activation of multiple goals)
nor the representation of correlated spaces (no inverse kinematics
model).

Relations to Neurophysiology

Although we did not focus on anatomical accuracy, our model
is in line with current neurophysiological and neuroanatomical
findings. From a macroscopic perspective, the model fits into
current theories that locate associative unsupervised learning
mechanisms in the cerebral cortex and that emphasize the impor-
tance of recurrent neural connections in these areas (Doya, 1999,
2000).

More important, recent neurophysiological and psychological
studies suggest that population-encoded, isomorphic representa-
tions of body postures, but also peripersonal and extrapersonal
surround spaces, can be found in various forms in various integra-
tive cortical sensory, motor, and sensorimotor areas (Holmes &
Spence, 2004; Maravita et al., 2003; Paninski, Shoham, Fellows,
Hatsopoulos, & Donoghue, 2004; Rizzolatti, Fadiga, Fogassi, &
Gallese, 1997; Schwartz, Moran, & Reina, 2004). In fact, Schwartz
et al. (2004) showed that it is possible to measure distinct repre-
sentations of arm movements in a monkey when an artificial
mismatch is created by a visor that displays skewed actual arm
movements from the monkey. Integrating the activities of redun-
dant population encodings, neural activity in the ventral premotor
cortex did not match the encodings in the primary motor cortex,
representing the visually perceived arm movements and the pro-
prioceptively perceived arm movements, respectively (Schwartz et
al., 2004). This shows that the brain encodes different body spaces,
whose activities depend predominantly on different sensory infor-

5 A Euclidean distance prioritized search through the space (cf. Russel &
Norvig, 1995).
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mation. The identified encodings are somewhat similar to the
posture space and hand space encodings in the SURE_REACH
architecture, in which posture space relies on proprioceptive joint
angle information and in which hand space relies on visual arm
location information.

Moreover, Graziano (2006) suggested that the primary motor
cortex represents the arm as posture-based, as does the posture
representation in SURE_REACH. It was shown that neural activity
and artificial neural stimulation of a neuron correlate most signif-
icantly with particular postures, either holding the arm in that
posture or causing the arm to move to that posture, respectively.
Although these cortical representations are certainly much more
robust, redundant, and self-structuring, the population-encoded
posture space in SURE_REACH mimics such population codes.

On a synaptic level, our model relies entirely on simple Hebbian
learning, which is principally known to modulate synaptic connec-
tivity in the brain (Abbott & Nelson, 2000; Jackson, Mavoori, &
Fetz, 2006). The associative and recurrent connections were struc-
tured via Hebbian learning in an unsupervised (or self-supervised)
manner. Thus, the learning mechanisms in SURE_REACH are
also biologically plausible.

Shortcomings and Extensions

Despite the correlations to known neuronal representations and
particular cortical brain structures, as well as to basic behavioral
data in humans, SURE_REACH currently mimics only a small and
highly abstract part of a biological cognitive system. Nonetheless,
the results are promising and the current architecture is modular
enough to enable improvements and enhancements to face current
system challenges and shortcomings. In the following sections, we
touch on some of the forthcoming challenges.

Representation of Internal Spaces

Although SURE_REACH realizes many aspects previously
hardwired in cognitive system architectures, the architecture is still
hardwired in multiple aspects. First and foremost, the neuronal
populations covering posture space and hand space are uniformly
distributed and hardwired. In future work on SURE_REACH, it
would be desirable to add growing, self-organizing maps (Fritzke,
1995; Haykin, 1999; Martinetz, Berkovitsch, & Schulten, 1993),
which are able to develop a space-covering neural population from
scratch. Dependent on the imposed biases on the growth mecha-
nism, such structures might be more robust and flexible than might
be the uniformly distributed structures used in the current imple-
mentation. Self-structuring mechanisms are currently under further
development, such as the development of hyper-ellipsoidal activa-
tion patterns (Butz, 2005; Butz, Lanzi, & Wilson, 2006) for accu-
rate function approximations; vision-based predictive field repre-
sentations (Olsson, 2006); or the coverage of arbitrary, maze-like
environments (Toussaint, 2006). It is interesting to note that Aflalo
and Graziano (2006) have shown that a simple self-organizing map
can develop an artificial motor cortex array that resembles many
properties observed in monkeys, such as maps of hand locations,
simply by sampling the behavior repertoire typical for a monkey.

For the development of population encodings that cover higher
dimensional spaces, it seems necessary that the space coverage
will be more modular with receptive fields of varying sizes that

cover overlapping subspaces in the high-dimensional space. Re-
cent advances in manifold learning show that higher dimensional
spaces can indeed be efficiently represented by observing local
neighborhood structures that derive lower dimensional,
neighborhood-preserving structures from that data (Roweis &
Saul, 2000; Tenenbaum, de Silva, & Langford, 2000).

Another approach to higher dimensionality spaces is that of
modular encodings. Various neurophysiological findings suggest
that population encodings are highly modular, encoding, for ex-
ample, hand and finger postures independently of arm postures
(Graziano, 2006; Rizzolatti et al., 1988). A similar approach is
taken in robotics path planning in artificial intelligence, in which
road maps can partition high-dimensional spaces into multiple,
lower dimensional spaces (Russel & Norvig, 1995). Thus, a mod-
ular encoding of higher dimensional spaces to overcome the curse
of dimensionality appears plausible.

Another challenge for internal spatial representations is the
ability to reach locations in space that have not been reached
before. With the current approach and encoding, locations outside
of the population-encoded space cannot be reached. Action-
dependent directional encodings may alleviate this problem, as
already proposed in Mel (1991). That is, besides locations, direc-
tions may be encoded and linked to action codes that lead in a
specific direction. Such a representation may compete with the
currently used location-dependent encoding. Future research is
necessary to investigate the plausibility of such an approach and
the possible interaction between the two encodings.

Besides the challenge of reaching locations outside of the
population-encoded space, end-point accuracy of SURE_REACH
should be further improved. The most straightforward improve-
ment would be to learn more finely grained spatial encodings.
However, other less computationally intensive methods are imag-
inable. Somewhat similar to the PB theory approach, which sam-
ples end postures that surround an approximately suitable stored
posture (Rosenbaum et al., 2001), SURE_REACH may be en-
dowed with a local adjustment mechanism. Local target adjust-
ments could be applied, as in the PB theory, but direction-based
adjustments are also imaginable with the direction-based encod-
ings suggested above.

Another concern is that of obstacle avoidance with parts of the
arm other than the hand. Currently, only the hand location is
processed in posture memory so that obstacle avoidance is possible
only for the hand. Additional associative maps may be learned,
which could also relate elbow and wrist locations in space with
corresponding postures. Extensions to linear inhibitions that ex-
tend in coordinate space to the next joint may be possible to avoid
not only joint collision but complete arm collision.

Action Space Encoding

The action space is currently hardwired and discrete. This rep-
resentational choice was made because of spatial and computa-
tional time constraints. It is clearly imaginable that the action space
representation may also be structured with population codes, as has
been observed in biological neural codes (Flash & Sejnowski,
2001; Georgopoulus, 1995; Georgopoulos, Caminiti, Kalaska, &
Massey, 1983; Poggio & Bizzi, 2004). In this case, the recurrent
connections between different action columns would have to be
more convoluted, conditioned on different associated action sub-
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spaces. It might be interesting to enable the activation of more
elaborate action sequences, instead of simple, stepwise actions, as
is suggested within the concept of motor synergies (Bernstein,
1967; Poggio & Bizzi, 2004). A visionary approach in this direc-
tion was taken in Kuperstein (1991), who interleaved an action
target map for which each target position encoded the saccadic eye
movement necessary to move to that target. Such encodings sug-
gest a correspondence to cortical columns that represent mixtures
of experts confined to specific receptive fields (Hubel, 1993;
Mountcastle, 1978). Action-mediated, competitive neural struc-
tures may enable a similar constraint-recurrent neural activity
propagation with much more intricate, action-dependent activation
patterns.

System Plasticity

Another challenge is the improvement of the plasticity of the
learning algorithms currently implemented in SURE_REACH.
The usage of a simple Hebbian learning mechanism showed that
no complex learning mechanism is necessary to solve the targeted
problem. It should be obvious, though, that more elaborate learn-
ing mechanisms can replace the current one. Recent observations
have suggested that the plasticity of actual motor behavior adap-
tation works along multiple timescales (Krakauer & Shadmehr,
2006). These adaptation processes enable (a) temporary, fast ad-
aptation to temporally changed dynamics (e.g., carrying a heavy
object); (b) slower adaptation to temporally extended changes
(e.g., muscle fatigue); (c) even slower adaptation to general bodily
constraints and strength (e.g., general muscular capabilities or
body flexibility); and (d) very slow adaptation to general kinematic
and dynamic body constraints (e.g., body size). How this is real-
ized in the brain remains an open discussion. In a population-
encoding approach, overlapping neurons could have different
learning rates to simulate the different speeds of adaptation. Fur-
ther improvements and advancements in the available learning
algorithms and representations are necessary to account for these
capabilities.

Improved Exploration

Besides such architectural and learning constraints, there are
also multiple imaginable behavioral extensions. Currently, behav-
ior during motor learning in the SURE_REACH implementation is
completely randomized and not at all goal-driven. However, it is
known that motor behavior becomes goal-oriented very early in
infancy, even if it is not yet well controlled (von Hofsten, 2004).
Information seeking exploration strategies especially may actually
speed up model learning (Butz, 2002). Also in SURE_REACH,
motor activity might be goal-oriented earlier during learning. To
trigger goals in this way, though, the associative networks may
need to contain many more coarsely grained neurons to enable
action activations despite a highly incomplete posture memory and
inverse sensorimotor model.

Body-Related Grounding and Improvements

In its current implementation, SURE_REACH interacts with a
body that has hardly any morphological features. It becomes
increasingly clear, though, that biological bodies exhibit a multi-

tude of morphological or embodied intelligence (Pfeifer & Gomez,
2004). These bodily constraints enable a safer exploration of the
environment and more energy efficient behavior execution by the
exploitation of inherent bodily dynamics. These constraints must
also shape the development of internal motor control representa-
tions.

Although the spatial distributions of the population codes in
SURE_REACH need to be adjusted to more elaborate bodies, and
consequently more elaborate sensory information, the architecture
seems ready to integrate such enhancements. Besides the more
complex body constraints, the morphology might also enable faster
learning of simple movement patterns as a result of self-
stabilization effects that cause the natural, morphologically
grounded selection of preferred postures and movement execu-
tions. It seems an interesting research challenge to investigate how
such beneficial morphological constraints can shape internally
developing posture spaces, hand spaces, or inverse kinematics and
sensorimotor models.

Integration of Multiple Information Sources

Currently, the internal spaces of SURE_REACH were activated
by simple activation functions that assumed a uniform distribution
of receptive fields, providing exact sensory feedback of limb
posture and hand positions. Moreover, the motor controller relied
on immediately available sensory feedback to control the arm
effectively. In the real world, though, these information sources are
often highly noisy and delayed in time. To be able to control a
more complex body in real time, future SURE_REACH imple-
mentations will need to integrate (a) sensory information from
multiple modalities and also (b) emulated forward model feedback
information.

Multi-modal sensory integration. It becomes increasingly
clear that internal body spaces gather information from multiple
sources, integrating the information in various, internal body
spaces (Holmes & Spence, 2004; Maravita et al., 2003). Essen-
tially, such internal representations are estimates of environmental,
bodily, and behaviorally relevant properties. The integration of
multiple sensory information sources into internal body space
representations is certainly an interesting and highly important
challenge.

Psychological research suggests that the brain integrates multi-
ple sources of information, dependent on the significance and
current reliability of each source. One approach to realize such
sensory integration processes is Bayesian information processing
with population codes (Knill & Pouget, 2004; Deneve & Pouget,
2004). In Bayesian information processing, a priori knowledge is
combined with sensory information accounting for information
reliability. For example, it was shown that human participants tend
to rely more on knowledge of generally likely finger positions or
perturbations than on visual feedback, if the visual feedback is
blurry or inaccurate (Körding, Ku, & Wolpert, 2004; Körding &
Wolpert, 2004).

SURE_REACH is ready for such Bayesian information process-
ing mechanisms. The current arm posture is represented by a
number of different neurons forming a population code. In situa-
tions of uncertainty, many neurons may be activated, forming a
broader, more blurry representation of the current posture, whereas
only few neurons may be active if the posture is well known to the
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controller. Because of the associative learning scheme, frequently
observed sensorimotor contingencies will be represented by stron-
ger synaptic connections than will others. Hence, if the arm state
is well defined, a very narrow set of sensorimotor contingencies is
included in the motor command generation process, resulting in
precise movements. On the other hand, if the arm state is uncertain
and the current posture is consequently represented by many
neurons, many sensorimotor contingencies compete for their con-
tribution to the motor commands. Neurons that represent fre-
quently observed—and thus very likely—arm states will be more
active and will contribute more strongly to movement execution.
Thus, a priori knowledge will be encoded by the strength of the
synaptic connections and their interaction with neural activity.

Forward model incorporation. Although SURE_REACH
learns sensorimotor contingencies, its learned sensorimotor model
has hitherto been used only as an inverse sensorimotor model for
the motor controller. The learned sensorimotor contingencies,
however, can generally be used bidirectionally and thus also as a
forward model. Such forward models may be used essentially as an
additional source for state estimations, as is done in Kalman
filtering approaches (Haykin, 2002). Moreover, the forward model
may be used during fast action execution as a replacement or as
compensation for delays in actual sensory feedback in order to
avoid behavioral instabilities, which are sometimes otherwise un-
preventable (Mehta & Schaal, 2002). An efferent copy of recent
motor activity could be propagated through the forward model and
may then be used to compensate for sensory delays during closed-
loop control (Flash & Sejnowski, 2001; Todorov, 2004). In this
way, the sensorimotor model in SURE_REACH could be used not
only inversely for the generation of motor commands, but also as
an emulator to enhance sensory processing by the generation of
sensory predictions, which can be used to substitute delayed sen-
sory information, and, consequently, to improve and stabilize
motor control during action execution (Cruse, 2003; Grush, 2004;
Kawato, 1999; Wolpert & Ghahramani, 2000).

Summary and Conclusions

The biologically plausible SURE_REACH architecture over-
comes deficiencies of previous learning models of motor behavior.
Previous error-based methods require the resolution of redundancy
before learning and are consequently inflexible when additional
task constraints arise. Previous unsupervised learning models have
been applied mainly for the resolution of inverse kinematics with
limited, often hard-coded capabilities of trajectory generation.
SURE_REACH is an unsupervised learning architecture that is
capable of controlling a redundant plant. The current implemen-
tation of SURE_REACH confirms robust learning as well as
flexible adaptation to novel contexts and task constraints. Reach-
ing goal locations is learned quickly, accurately, and reliably,
relying only on learning signals that are self-generated and senso-
rimotor grounded. Various behavioral findings were replicated,
including improvements in reaching accuracy and efficiency dur-
ing learning, priming effects, and the start-posture dependency of
the movement outcome. Moreover, the model accounts for the
remarkable flexibility that humans exhibit when confronted with
novel task constraints, such as obstacles or impaired joints.

SURE_REACH is able to solve the redundancy problem for
end-posture redundancy, as well as for trajectory redundancy,

immediately before action onset, thus keeping movement control
flexible. This flexibility enables the immediate adaptation to novel
task-dependent constraints. The redundant encodings in posture
memory and the sensorimotor model enable the generation of
motor commands that avoid obstacles or account for additional
end-posture constraints, which had not been encountered during
learning. Thus, SURE_REACH proposes an expandable theoreti-
cal model for understanding motor learning and flexible, task-
dependent motor behavior.

Future research may tackle the control of more elaborate bodies
by SURE_REACH and the consequently necessary development
of other, advanced spatial and bodily representations. Also in the
current arm model of SURE_REACH, modified and additional
sensory, motor, and sensorimotor representations may further im-
prove motor control accuracy and flexibility. Moreover, the cur-
rently involved learning mechanisms in SURE_REACH may be
enhanced or modified to tackle other challenges, such as noisy or
delayed sensory feedback or changing arm properties. Also, action
execution in SURE_REACH could be controlled or modified
further in order to yield more plausible velocity profiles for reach-
ing movements. Finally, a motivational module may be designed
to trigger positive and negative rewards internally, causing either
the invocation of additional constraints, such as the simulated
neural inhibitions in the case of an arthralgic joint or a broken arm,
or the internal activation of hand or posture goals.

With these enhancements, systems based on SURE_REACH
will become progressively independent, developmental, cognitive
architectures that autonomously start interacting with their body
and environment. Ultimately, the system enhancements may lead
to the creation of self-sustaining, autonomous, artificial cognitive
systems. Although the design of such systems appears to be an
interesting research challenge in its own right, it can be expected
that this research endeavor will also reveal many more useful
insights into the functionality of biological motor control and
cognition in general. We hope that SURE_REACH provides an
inspiring step in the right direction.
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Appendix

Parameter Specifications

The following parameters were used to evaluate the model, if
not mentioned otherwise in the text: � � 0.10; p � 0.10. In the
motor controller, � decayed exponentially from 0.1 in the first time
step to 0.01 in the 1,000,000th time step. The learning rate in
posture memory was set to ε � 0.001. For the generation of the
sensory-to-motor mappings, the following factors were used: 
 �
.434, 	 � .172.

In the first obstacle avoidance task, neurons with preferred
values within the rectangle with top left corner at (�2.4, 0.8) and
bottom right corner at (�0.8, �0.8) were considered part of the
left obstacle and activations were set to 1.0. The corners of the

rectangle representing the right obstacle were (0.8, 0.8) and bottom
right corner at (2.4, �0.8). In the second task, state neurons with
preferred values that had a y component of at least 1.0 were
considered part of the ceiling obstacle.

The model is implemented in Java 1.6. The experiments were
run on a standard office PC (Pentium 4 HT, 3.2 GHz). Training
and evaluating a single controller took approximately 25 min.
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