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A B S T R A C T

Being able to predict self-generated sensory consequences is an important feature of normal brain functioning.
In the auditory domain, self-generated sounds lead to smaller brain responses (e.g., auditory evoked responses)
compared to externally generated sounds, which is usually referred to as the sensory attenuation effect. Here we
investigated the role of brain oscillations underlying this effect. With magnetoencephalography, we show that
self-generated sounds are associated with increased pre-stimulus alpha power and decreased post-stimulus
gamma power and alpha/beta phase locking in auditory cortex. All these oscillatory changes are correlated with
changes in evoked responses, suggesting a tight link between these oscillatory events and sensory attenuation.
Furthermore, the pre- and post- oscillatory changes correlate with each other across participants, supporting the
idea that they constitute a neural information processing sequence for self-generated sounds. In line with
findings of alpha oscillations reflecting feedback and gamma oscillations feedforward processes and models of
predictive coding, we suggest that pre-stimulus alpha power represent prediction and post-stimulus gamma
power represent prediction error, which is further processed with post-stimulus alpha/beta phase resetting. The
correlation between these oscillatory events is further validated with cross-trial analysis, which provides
additional support for the proposed information processing sequence that might reflect a general mechanism for
the prediction of self-generated sensory input.

1. Introduction

In our interactions with the environment, action and perception are
tightly linked. Voluntary motor actions typically lead to predictable
sensory consequences. For example, knocking on a door results in a
predictable sensory input to the auditory and somatosensory systems.
It is well established that these self-generated sensory stimuli elicit
smaller brain responses than externally generated stimuli (Blakemore
et al., 1998; Martikainen et al., 2005; Schafer and Marcus, 1973) – a
phenomenon known as sensory attenuation. For example, a MEG study
showed a reduced auditory M100 component when the sound was
generated by participants pressing a button compared to when the
sound was passively presented (Martikainen et al., 2005).

A forward model has been proposed to account for this effect
(Blakemore et al., 1999; Ramnani, 2006; Wolpert and Ghahramani,
2000). The model posits that along with a motor command, an
efference copy (von Holst and Mittelstaedt, 1950) is sent that allows
the computation of the predicted, imminent sensory consequences. The
predicted sensory signal is then compared to the actual incoming
sensory signal and results in a modulation of the brain responses
depending on the match between the real and the predicted sensory
signal (attenuated when matching). A detailed conceptual explanation

can be derived from the predictive coding theory (Friston, 2005). In
this framework, the evoked response is an expression of prediction
error, which is the discrepancy between the predicted sensory con-
sequence and the actual sensory input. Accurately predicted stimuli
lead to smaller prediction errors, which is reflected in a decreased
evoked response (note that the similar idea was already put forward by
von Holst and Mittelstaedt (1950)). In addition, it has been suggested
that predictions and prediction errors are communicated along cortical
hierarchies in distinct frequency bands. More specifically, recent
evidence suggests that predictions are communicated along anatomical
feedback connections via alpha/beta rhythms and prediction errors are
communicated along feedforward connections via gamma rhythms
(Bastos et al., 2015; Michalareas et al., 2016; Wang, 2010).

Our study addresses the following three questions: 1) How is the
pre-stimulus prediction of expected sensory consequences of an action
reflected in the oscillatory activity of sensory brain areas? Neural
oscillations in low frequency bands (below 20 Hz) are likely candidates
for the implementation of sensory attenuation for several reasons.
First, these oscillations are tightly linked to excitability changes in
neural populations (Jensen and Mazaheri, 2010; Thut et al., 2012;
Weisz et al., 2011), and therefore may mediate gain control for the
processing of incoming sensory information. Second, a number of
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studies provide converging evidence that low frequency oscillations
particularly in the 10 Hz range (alpha band) support active inhibition.
An increase in alpha power is typically associated with a decrease in
perceptual performance (Frey et al., 2014; Thut et al., 2006; Van Dijk
et al., 2008). Finally, the phase of low frequency oscillations (including
alpha) was also shown to modulate neural excitability, so that near-
threshold stimuli are more likely to be perceived or neural responses to
be enhanced if stimulus presentation is aligned to a certain phase of the
ongoing oscillations (Arnal and Giraud, 2012; Busch et al., 2009;
Lakatos et al., 2007; Mathewson et al., 2009). We therefore hypothe-
sized that pre-stimulus changes in low frequency oscillations may
reflect a prediction process, which is generated by the forward model to
implement the suppression of post-stimulus responses for sensory
attenuation. Indeed, some studies already provided evidence that pre-
stimulus alpha power is higher in the sensory cortex when speech or
visual stimuli are self-induced by movement (Müller et al., 2014;
Stenner et al., 2014).

2) How is the prediction error reflected in post-stimulus oscillatory
activities? We hypothesised that processes related to prediction error
are reflected in gamma oscillations (Bauer et al., 2014; Behroozmand
et al., 2016), in line with findings showing that gamma oscillations
relay feedforward information (e.g., Michalareas et al., 2016). In the
context of sensory attenuation, intracranial recordings from neurosur-
gical participants showed that gamma power (70–150 Hz) was sup-
pressed in response to speech stimuli during speaking as compared to
listening (Flinker et al., 2010). Thus reduced gamma power may
indicate decreased prediction errors when the stimulus is better
predicted through the forward model during speaking as compared
to listening. Furthermore, we planned to use correlation analysis to test
if there is a link between the prediction related pre-stimulus oscilla-
tions and prediction error related post-stimulus oscillations.

3) How does the post-stimulus attenuation of evoked field re-
sponses (reflecting sensory attenuation) relate to post-stimulus
changes in the frequency domain (decreases of oscillatory power, phase
locking or both)? While a decrease in post-stimulus gamma power has
recently been reported (Flinker et al., 2010) and a reduction in evoked
field responses is a frequent finding in sensory attenuation paradigms,
our understanding of how these processes interrelate is still incom-
plete. Notably, the decrease in post-stimulus gamma power does not
seem to contribute to sensory attenuation as reflected in trial-averaged
evoked responses (e.g., attenuation of M100 component), given that a
low pass filter at around 40 Hz was applied in many studies on evoked
responses (e.g., Baess et al., 2011; Martikainen et al., 2005; Müller
et al., 2014). For a better understanding of the post-stimulus neural
processes underlying sensory attenuation, we hence conducted analysis
at the level of single trials. A reduced amplitude of evoked responses
after averaging across trials during sensory attenuation could result
from an amplitude reduction in single trials, an increased single trial
phase jitter or a combination of both. Moreover, since sensory evoked
responses are primarily reflected in an increase of power and/or phase
locking in the theta frequency band, one may expect that a reduction of
power and/or phase locking in the same frequency band contributes to
sensory attenuation. Finally, we used correlation analysis to establish
possible links between the neuronal processes in the post-stimulus
window across the different, relevant frequency bands (e.g., gamma
and alpha).

To answer these questions, we conducted a MEG experiment using
a well-established sensory attenuation paradigm in the auditory
domain, in which neural responses from self-generated and passive
stimuli were compared (Baess et al., 2011; Schafer and Marcus, 1973).
After confirming the existence of sensory attenuation in auditory
cortex, we performed time-frequency analysis for neural activations
in auditory cortex to answer these questions.

2. Methods

2.1. Participants, procedure and recording

14 healthy, right-handed volunteers (6 males, mean age=22.6,
SD=1.8; all reported normal hearing) were recruited from a local
participant pool. Participants gave written informed consent prior to
the experiment and received monetary compensation after the experi-
ment. The study was approved by the local ethics committee (Ethics
Committee of College of Science and Engineering, University of
Glasgow) and was conducted in accordance with the Declaration of
Helsinki.

A 248-magnetometers whole-head MEG system (MAGNES 3600
WH, 4-D Neuroimaging) was used for data recording with a sampling
rate of 1017 Hz.

The stimulus was a pure tone (1000 Hz, 50 ms in duration, 90 dB
sound pressure level) delivered through a plastic tube. There were four
conditions (100 trials each). In the passive periodic condition, the
auditory stimulus was controlled by the computer and was presented
once every three seconds. The passive jittered condition was the same
with the passive periodic condition except that the stimulus was
presented with a jittered inter-stimulus interval between 2000 and
4000 ms (uniform distribution). In the active condition, the stimulus
was presented immediately after an index finger lifting movement that
the participants were asked to perform about once every three seconds
without inner counting. The motor only condition was the same with
the active condition except that no stimulus was presented after each
movement. We used a light sensor (instead of a response box) to record
the movements without noise associated with the finger movement.
Every movement unblocked the beam from the light sensor (placed
next to participant's right index finger), which then generated a sound
stimulus. Participants were asked to close their eyes during testing.
Before the start of the experiment, participants received 50 trials of
practice to familiarize themselves with the light sensor and the rate of
finger movements. During this practice, they were asked to move the
finger about once every three seconds without inner counting and they
received visual feedback for their timing performance after each trial.
No such feedback was provided in the real data collection. The four
conditions were presented in a random order and participants were
encouraged to take a break in between. The condition with jittered
stimulus presentation served to analyze spontaneous fluctuations in
preparedness to sounds (after having identified the oscillatory corre-
lates in the active vs passive periodic comparisons). The motor only
condition was not further analyzed here.

2.2. Data analysis

Data analysis was performed with Matlab using FieldTrip toolbox
(Oostenveld et al., 2011) and in-house codes in accord with current
MEG guidelines (Gross et al., 2013). Trials with very short inter-trial
intervals (less than 1500 ms) were discarded (less than 1.3% in the
active condition). Then MEG signals were denoised using ft_denoi-
se_pca which removes artefact components measured by the MEG
reference sensors. Trials with artifacts were removed following visual
inspection with ft_rejectvisual. Eye movement and heart artefacts were
rejected using ICA. On average, 93.6 (SD: 4.1, minimum: 85), 94.0
(SD: 4.4, minimum: 86) and 94.1 (SD: 3.6, minimum: 88) trials
remained after this step for the active, passive periodic and passive
jittered condition, respectively.

2.3. Evoked responses

In sensor space analysis, MEG signals were low-pass filtered with
30 Hz cut-off frequency. Original magnetometer signals were converted
to planar gradient representation. Three sensors from each hemisphere
that were predominantly responding at the latency of the M100
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component (95–120 ms post-stimulus) in the passive periodic condi-
tion were selected for analysis. Event related fields aligned to the onset
of the sound were computed for each condition with baseline (−500 to
−100 ms) correction. The M100 component was statistically compared
between conditions using a paired t-test with a Monte Carlo randomi-
zation of condition labels with 1000 permutations.

2.4. Source localization

T1-weighted structural magnetic resonance images (MRIs) of each
participant were co-registered to the MEG coordinate system using a
semi-automatic procedure. Anatomical landmarks (nasion, left and
right pre-auricular points) were manually identified in the individual's
MRI. Initial alignment of both coordinate systems was based on these
three points. Subsequently, numerical optimization was achieved by
using the ICP algorithm (Besl and McKay, 1992).

Individual head models were created from anatomical MRIs using
segmentation routines in FieldTrip/SPM5. Leadfield computation was
based on a single shell volume conductor model (Nolte, 2003) using a
10 mm grid defined on the template (MNI) brain. The template grid
was transformed into individual head space by linear spatial transfor-
mation.

The localization of the auditory evoked component was based on
the eLoreta algorithm as implemented in Fieldtrip (http://www.
fieldtriptoolbox.org/). All other analyses used LCMV filters computed
based on a covariance matrix from −500 ms to 500 ms with a
regularisation of 7% of the mean across eigenvalues of the covariance
matrix.

All further analyses were based on a representative voxel from the
right primary auditory cortex that was anatomically defined and
showed clear reconstructed evoked responses. We focused the analysis
on the right auditory cortex because activity estimates for left auditory
voxels can be contaminated by activity from the left primary motor
cortex related to the movement of the right hand finger. For the
selected voxel, we computed an LCMV filter along the orientation of
maximal power (across all experimental conditions) and extracted the
single-trial time series separately for each experimental condition.

2.5. Time-frequency analysis

For the selected voxel, we subjected the time-series to time-
frequency analysis, separately for each participant and experimental
condition. We performed time-frequency analysis with a temporal
resolution of 10 ms and a spectral resolution of 1 Hz on 500 ms
(200 ms) long sliding windows for frequencies below (above) 40 Hz.
For frequencies below 40 Hz, a Hanning taper was applied before
fourier transformation. For frequencies above 40 Hz, a Hanning taper
was applied for phase estimation and a multi-taper approach was used
for power estimation with a smoothing of 10 Hz.

To test for differences between conditions, individual time-fre-
quency maps were subjected to dependent-sample t-test (active vs
passive periodic). Oscillatory power was log transformed with reference
to the mean power from −700 to 700 ms. The null distribution was
estimated using 1000 randomizations and multiple comparison correc-
tion was performed using the cluster method (Maris and Oostenveld,
2007). Only significant results (p < 0.05, cluster correction) are re-
ported.

2.6. Correlation analysis

We used Spearman correlation for all correlations across partici-
pants implemented in the robust correlation toolbox (Pernet et al.,
2012). First, the sensory attenuation effect in auditory evoked re-
sponses was used for correlation with the pre-stimulus alpha power
increase, post-stimulus alpha phase locking decrease, and post-stimu-
lus gamma power decrease. This sensory attenuation effect was

calculated by taking the relative change of evoked responses (70–
160 ms) between the active and passive periodic condition using the
voxel reconstructed time series data (i.e., the amplitude difference in
evoked responses between the active and passive periodic condition
divided by the amplitude of evoked responses in the passive periodic
condition). T-test was used to test if the sensory attenuation effect is
significantly different from 0 for the selected voxel in auditory cortex.
Other components used for correlation analysis were derived from
clusters showing significant differences between active and passive
periodic conditions (see results). The pre-stimulus alpha power in-
crease (10 Hz, −400 to 0 ms), post-stimulus alpha phase locking
decrease (9–10 Hz, 0–150 ms), and post-stimulus gamma power
decrease (high gamma: 85–104 Hz, 90–120 ms; low gamma: 57–
62 Hz, 30–80 ms) refer to relative changes that were calculated in
the same way as the sensory attenuation effect in evoked responses.
Second, correlation analysis was performed among the oscillatory
changes between conditions: the pre-stimulus alpha power increase
(9–11 Hz, −400 to −60 ms) and the post-stimulus gamma power
decrease (93–106 Hz, 90–120 ms); the post-stimulus alpha phase
locking decrease (9–11 Hz, 0–150 ms) and the post-stimulus gamma
power decrease (85–104 Hz, 80–110 ms).

2.7. Analysis of passive jittered condition data

This part of analysis aims at corroborating the existence of an
oscillatory neural information processing sequence (see Fig. 5d) from
the above between-condition comparisons by testing them in a single
condition setting. In the passive jittered condition, single trial pre-
stimulus alpha power (8–12 Hz, −300 to 0 ms) was extracted per
participant and correlated with the single trial gamma power (absolute
baseline correction; baseline: −300 to 0 ms). Pearson correlation
coefficients were Fisher z transformed before being subjected to t-tests
against 0. For analyzing the relationship between post-stimulus gamma
power and post-stimulus alpha/beta phase, we computed the phase
deviation as the absolute angular difference of a single trial phase to the
mean phase across trials. Then we used the phase deviation in the time-
frequency window that showed a significant difference between condi-
tions (Fig. 2b; 12–14 Hz, 70–160 ms) to correlate with single trial
gamma power (with circ_corrcl from CircStat toolbox; Berens (2009)).
The correlation coefficients within the first 100 ms after the stimulus
onset were statistically compared to mean correlation coefficients in a
baseline period (−300 ms to 0; paired t-test) after Fisher z transforma-
tion. Next, we correlated the gamma power (99–106 Hz, 0–40 ms;
Fig. 5b) from the time window where significant correlations were
found with the alpha/beta (12–14 Hz) phase deviation over time (from
−750 ms to 750 ms) to reveal the temporal relationship between them.
Cluster correction was applied to all the multiple comparisons.

3. Results

3.1. Replication of sensory attenuation in auditory cortex

We replicated the typical sensory attenuation effect on auditory
evoked fields. There was a significant decrease in the amplitude of
sound evoked M100 component in the active as compared to the
passive periodic condition (left sensors: t(13)=3.67, p < 0.01; right
sensors: t(13)=3.99, p < 0.01) (Fig. 1b). Source localization analysis
demonstrated the maximum sensory attenuation effect in the auditory
cortex, confirming a significant reduction of primary auditory cortex
response amplitude for self-initiated sounds compared to external
sounds (Fig. 1c). No significant differences were found in M100
amplitudes between the two passive conditions (left sensors: t(13)
=0.22, p=0.43; right sensors: t(13)=0.33, p=0.37).
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3.2. Neural activity preceding sensory attenuation in auditory cortex

As introduced above, we hypothesised that the attenuated auditory
evoked responses are modulated by anticipatory prediction mechan-
isms through the forward model, possibly reflected in the alpha-band
oscillation. Therefore, we tested for differences in oscillations between
the active and passive periodic condition in the pre-stimulus period.

This analysis revealed differences in the state of auditory cortex
between both conditions prior to the presentation of the stimulus. A
significant increase in alpha band power (~10 Hz) was found in the
active as compared to the passive periodic condition starting around
400 ms before stimulus onset (Fig. 2a). Testing for a relationship
between this pre-stimulus alpha power increase and the magnitude of
the attenuation in auditory evoked responses across participants
revealed a significant correlation: increased alpha power was associated
with increased sensory attenuation (Spearman's rho=−0.74, p=0.003,
95% CI = [−0.92 −0.33]; Fig. 3a, see also Supplementary material for
robust correlation results). Note that no significant changes in phase
locking were found in the pre-stimulus time window (Fig. 2b).

3.3. Neural representation of sensory attenuation in auditory cortex

To examine how the sensory attenuation effect in auditory evoked
responses relates to oscillatory neural activity at the single-trial level,
we focused next on frequency-specific activity in the post-stimulus time
window that overlaps with the M100 component and statistically
compared the oscillatory power and inter-trial phase locking between
the active and passive periodic condition.

Time-frequency analysis revealed a significant decrease of broad-
band power at frequencies in the alpha/ low beta (9–15) and higher
beta band (20–35 Hz) (Fig. 2a) as well as in the gamma band (40–
70 Hz and 90–110 Hz, Fig. 2c) for the active as compared to the
passive periodic condition. Time-frequency analysis of the passive
jittered condition revealed that the evoked component was most

strongly represented in the theta frequency band (see Supplementary
Fig. S1). Interestingly, differences between conditions only occurred at
higher frequencies. These broadband changes overlapped in time with
the sensory attenuation effect. In parallel, phase locking to stimulus
onset was significantly reduced in a limited frequency band, spanning
the alpha/low beta frequency (9–15 Hz) in the same time window, for
the active as compared to the passive periodic condition (Fig. 2b). No
significant differences were found in gamma band phase locking
(Fig. 2d).

When examining the relationship between these post-stimulus
events and the attenuated auditory evoked responses, we found the
sensory attenuation effect (t(13)=2.87, p=0.01 in the selected voxel) to
significantly correlate with three post-stimulus oscillatory events
namely alpha phase locking decrease (Spearman's rho=0.63, p=0.02,
95% CI=[0.05 0.94], Fig. 3b), high gamma power decrease (Spearman's
rho=0.69, p=0.006, 95% CI=[0.29 0.90], Fig. 3c) and low gamma
power decrease (Spearman's rho=0.65, p=0.01, 95% CI=[0.24 0.88],
Fig. 3d). All the above correlations were resistant to influences from
outliers as the correlations remained significant when eliminating
outliers using the Spearman skipped correlation. Sensory attenuation
was not significantly correlated with alpha/beta power changes (see
Supplementary Fig. S2).

3.4. Neuronal implementation of sensory attenuation in auditory
cortex

Our results so far demonstrate that changes in pre-stimulus alpha
power, post-stimulus alpha phase locking and post-stimulus gamma
power were most relevant to sensory attenuation, as evidenced by both,
significant between-condition differences and correlations across par-
ticipants. Because the pre-stimulus low frequency power change
(especially in the alpha band) and post-stimulus oscillatory changes
are possible candidates for mediating the sensory attenuation effect in
auditory cortex, we investigated if these oscillatory components are

Fig. 1. Replication of sensory attenuation effect. (A) schematic show of the active and passive periodic condition. (B) M100 component (the shaded area) is significantly lower in the
active compared to the passive periodic condition (p < 0.01). (C) sensory attenuation effect is localized in auditory area using eLoreta.
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correlated amongst each other. Across participants, there was a
significant negative correlation between the pre-stimulus alpha power
increase and the post-stimulus high gamma power decrease
(Spearman's rho=−0.82, p=0.0003, 95% CI=[−0.94 −0.50]; Fig. 4a).
Moreover, a significant positive correlation was found between the
post-stimulus gamma power decrease and the post-stimulus alpha
phase locking decrease (Spearman's rho = 0.73, p = 0.003, 95% CI =
[0.31 0.92]; Fig. 4b). Both correlations were resistant to possible
influences of outliers (see Supplementary material for robust correla-
tion results) and remained significant after Holm-Bonferroni correc-
tion. For a full correlation map, see Supplementary Fig. S3.

3.5. Co-variation of the auditory pre-stimulus and post-stimulus
oscillatory components related to sensory attenuation in the absence
of predictive cues

Next, we tested whether the sequence of events described above
(pre-stimulus alpha power relating to post-stimulus gamma power and
alpha/beta phase reset) is also present during auditory sensory
stimulus processing when no explicit predictions can be formed.
Therefore, we tested for the presence of the same correlations within
participant in a cross-trial analysis of the passive listening condition in
which the inter-trial interval was randomly jittered (between 2000 and
4000 ms). The jittered interval makes the exact onset of the stimulus
unpredictable, thus leading to a variation in the participant's prepared-
ness towards the stimulus.

We correlated pre-stimulus alpha power (8–12 Hz; −300 ms to
0 ms) with post-stimulus gamma power across trials and subjected the
individual correlation maps to group statistics. Consistent with our
analysis across participants, we found a significant correlation between
pre-stimulus alpha power and early post-stimulus gamma power
(Fig. 5a). The negative sign of the correlation indicated that a high
pre-stimulus alpha power was associated with a low post-stimulus
gamma power. The pre-stimulus alpha power was also correlated with
gamma power (around 85 Hz) starting around 100 ms after stimulus
onset.

In order to reveal a possible relationship between post-stimulus
gamma power and post-stimulus alpha/beta phase across trials (in
analogy to the cross participant analysis above), we calculated the
phase deviation as the absolute angular difference of a single trial phase
to the mean phase across trials for each individual at alpha/beta
frequency shortly after stimulus onset. We then correlated this phase
deviation with single-trial power across time and frequency. Post-
stimulus gamma power was significantly correlated with alpha/beta
band phase deviation shortly after stimulus onset (Fig. 5b). This
correlation was only significant for post-stimulus phase from 11 to
14 Hz (see Supplementary Fig. S4). Importantly, recalculating the
correlation by taking into account only the very early gamma power
data (first 40ms of significant post-stimulus correlations) revealed its
correlation with alpha/beta phase deviation to peak at a later time
point (at around 150 ms, Fig. 5c), indicating that gamma power
precedes alpha/beta phase resetting.

Fig. 2. Power and phase locking value comparisons between the active and passive periodic condition. In the pre-stimulus time window, a clear alpha power increase is shown (panel A).
In the post-stimulus time window, broadband power decreases coincide with sensory attenuation from the evoked fields analysis (panel A and C). Of particular interest is the post-
stimulus gamma power decrease. But there are no changes to theta band oscillations. Post-stimulus phase locking is decreased in the alpha/beta range (panel B). No difference is found
in the gamma range phase locking (panel D).
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Fig. 3. Scatter plots (ranking data) for the correlations between the sensory attenuation effect and significant power/phase locking changes between conditions in auditory cortex
(source space). (A) Sensory attenuation is negatively correlated with pre-stimulus alpha power increase (r=−0.74, p=0.003, CI=[−0.92 −0.33]). (B) Sensory attenuation is positively
correlated with post-stimulus alpha phase locking decrease (r=0.63, p=0.02, CI=[0.05 0.94]). (C) Sensory attenuation is positively correlated with post-stimulus high gamma power (85–
104 Hz) decrease (r=0.69, p=0.006, CI=[0.29 0.90]). (D) same with C, but with lower gamma (57–62 Hz) (r=0.65, p=0.01, CI=[0.24 0.88]). The solid line indicates a linear fitting to the
data points and the shaded area indicates the 95% confidence interval of the correlation.

Fig. 4. Scatter plots (ranking data) for cross-participant correlations between pre-stimulus alpha power increase and post-stimulus gamma power decrease (A), and between post-
stimulus alpha phase locking decrease and post-stimulus gamma power decrease (B). An increase in the pre-stimulus alpha power is associated with a decrease in the post-stimulus
gamma power (Spearman's rho=−0.82, p=0.0003, 95% CI = [−0.94 −0.50]), and a decrease in the post-stimulus gamma power is associated with a decrease in the post-stimulus alpha
phase locking (Spearman's rho=0.73, p=0.003, 95% CI=[0.31 0.92]). The solid line indicates a linear fit to the data points and the shaded area indicates the 95% confidence interval of
the correlation.
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4. Discussion

Sensory attenuation has been typically studied in the auditory
system, and is defined as a reduction of sensory (evoked) responses in
auditory cortex when the sensory event is predictable (self-initated)
versus non-predictable (externally generated). The neural mechanisms
underlying this phenomenon are likely part of a neural functional
architecture that acts along the different stages of sensory processing
pathways. In fact, this well-studied effect has been linked to the
predictive coding framework that postulates the importance of pre-
dictive neural models for general information processing in brain
networks (Brown et al., 2013; Friston, 2005). In this Bayesian frame-
work the brain generates predictions about the environment that are
constantly compared to and updated by incoming sensory evidence.
The resulting prediction errors are communicated to the next level in
the processing hierarchy. An integral part of this theory is the control of
gain of these prediction errors that is adjusted according to their
expected precision (Friston et al., 2015). It has been argued that
sensory attenuation originates from reduced precision of self-generated
sensory information (Brown et al., 2013). Interestingly, brain oscilla-
tions provide efficient mechanisms for gain control and are ideal
candidates for the neural mechanisms underlying sensory attenuation
at the level of evoked responses.

Our findings support this hypothesis. They replicate the classical
sensory attenuation effect (i.e., self-generated sound elicited a smaller
amplitude of M100 component compared to externally generated
sound) and show, first, how pre-stimulus changes of auditory alpha
band oscillatory power affect auditory stimulus processing as reflected
in the attenuated auditory evoked responses. Second, we demonstrate
that at the level of single trials, sensory attenuation in evoked responses
is assciated with, both reduced broadband power (including gamma)
and reduced alpha/beta phase locking in the same (post-stimulus) time
window, when comparing the active and passive periodic condition.
Third, we find a significant relationship between pre-stimlus alpha
power changes, post-stimulus gamma power changes and post-stimu-
lus alpha/beta phase changes, which may represent a functional
sequence of neural information processing steps around the time of
stimlus presentation (see Fig. 5d). This receives further support from
the single trial correlation analysis performed on the passive jittered
condition data.

4.1. Pre-stimulus predictors of sensory attenuation

We tested the hypothesis that modulation of low-frequency audi-
tory oscillations are involved in the implementation of sensory
attenuation. Indeed, our results demonstrate an enhancement of

Fig. 5. Results from the cross-trial analysis and schematic summary. In the passive jittered condition, pre-stimulus alpha power is correlated with post-stimulus gamma power (A), and
post- stimulus alpha/beta phase deviation is correlated with the gamma power at comparable frequency bands and time points (B). Taking the first 40ms post-stimulus gamma power where
significant correlations were found in (B), the temporal dynamics of its correlation with post-stimulus alpha/beta phase deviation is shown in (C). There is a clear peak around 150ms after
the stimulus onset. The red line indicates post-stimulus points where there are significant higher correlations than the baseline period (−750ms to 0; paired t test without multiple
comparison correction; p < 0.05). D is the schematic illustration of the relationship found among oscillatory changes between conditions. The increase of pre-stimulus alpha power is
negatively correlated with the decrease of post-stimulus gamma power, which in turn is positively correlated with the decrease of post-stimulus alpha/beta phase locking. This may
constitute a sequence of neural information processing (from I to III) which receives further support from the single-trial analysis with the passive jittered condition data. Red colour
indicates a relative signal increase in the active condition and blue indicates a decrease. Solid ellipse edge indicates power and dashed line indicates phase. Dashed arrow indicates a negative
correlation and solid arrow indicates a positive correlation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)Fig. 5
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auditory alpha oscillations (~10 Hz) for the active condition compared
to the passive periodic condition before stimulus onset.This indicates
that the upregulation of alpha oscillations is a viable mechanism for
suppression of stimulus evoked activity in auditory cortex when
stimulus presentation is self-generated. Indeed, our results are com-
patible with recent reports of enhanced alpha oscillations for self-
uttered sound (Müller et al., 2014) and self-initiated visual stimuli
(Stenner et al., 2014). In addition, our analysis revealed a significant
correlation between alpha power changes and sensory attenuation, i.e.,
increased pre-stimulus alpha power changes were associated with
increased sensory attenuation (i.e. more attenuated M100 response)
across participants. This is consistent with reports that pre-stimulus
alpha power correlates with early evoked responses (Ploner et al.,
2006). This finding is also consistent with results from a recent study
that modulation of alpha power reflects the precision of predictions
about upcoming stimuli (Bauer et al., 2014), and suggests that
individual differences in the ability to predict the sensory consequences
of one's actions are expressed in differences in the modulation of alpha
power.

Overall, the significantly increased alpha power for the active
compared to the passive periodic condition speaks in favour of an
active inhibition of auditory areas at the time of motor preparation as a
result of top-down mediated predictions in anticipation of the self-
generated (predicted) sensory stimulus.

4.2. Post-stimulus representations of sensory attenuation

The sound evoked response is characterized by an increase of both,
oscillatory power and phase locking that is strongest in the theta (4–
7 Hz) band (see Supplementary Fig. S1). However, this activity is not
modulated between the experimental conditions (active vs passive
periodic). Instead, we show here that the sensory attenuation effect in
auditory cortex was associated with a significant decrease of power and
phase locking in the same area at higher frequencies. This suggests that
the mechanisms responsible for sensory attenuation spare the low-
frequency theta component and instead modulate alpha/beta and
gamma components. A possible interpretation is that the low-fre-
quency theta component reflects the physical stimulus properties that
are unchanged between active and passive periodic conditions whereas
higher frequency components reflect more subjective properties of the
stimulus that are discussed below in more detail (Gross et al., 2007;
Iversen et al., 2009). The fact that sensory attenuation was associated
with a transient broadband power decrease in alpha and beta frequency
bands up to almost 40 Hz is in line with a recent study that looked at
the top-down modulation of brain responses to simple auditory
rhythms (Iversen et al., 2009). Strongest top-down effects were
observed in the beta range (while the alpha band was not
studied).Interestingly, high gamma band power was also reduced in
the active condition compared to the passive periodic condition, which
is consistent with intracranial recordings from patients (Flinker et al.,
2010). Another significant difference between active and passive
periodic condition shortly after stimulus onset emerged from the phase
locking analysis. Alpha/beta phase locking was weaker for active
compared to passive periodic condition. This difference is caused by
a higher variability of single-trial phase across trials in the active
condition. There are different possible explanations for this effect. It
could be a byproduct of the reduced alpha/beta post-stimulus power
for the active condition. In this scenario the reduced signal-to-noise
ratio (SNR) due to the reduced power leads to an artificially reduced
(less precise) estimate of single-trial phase. However, this scenario is
unlikely for three reasons. First, post-stimulus power is also signifi-
cantly reduced for high beta and gamma frequency bands without a
difference in phase locking. Second, the correlation of post-stimulus
gamma modulation to post-stimulus phase locking speaks against a
simple SNR-induced effect, especially because post-stimulus gamma
modulation correlates with alpha/beta phase but not alpha/beta power

(see Supplementary Fig. S3 c & d). Third, the single-trial correlation of
gamma power and alpha/beta phase favours a different interpretation
where alpha/beta phase is causally linked to gamma amplitude.

4.3. Implications for neural information processing

Both, single-trial analysis and statistical contrasts between condi-
tions revealed a functional neural information processing sequence
from changes in pre-stimulus alpha power, to post-stimulus gamma
power and post-stimulus alpha/beta phase. Prior to the stimulus onset,
alpha power controls the gain of local neuronal populations reflecting
the precision of the prediction about the incoming stimulus.
Mechanistically, this may be implemented by modulating local neuro-
nal excitability levels, known to be indexed by alpha activity (Romei
et al., 2008). The pre-stimulus alpha power in the passive jittered
condition fluctuated from trial to trial creating differential levels of
precision over the incoming stimulus, with low alpha power corre-
sponding to high levels of precision. When the stimulus arrives, any
incongruency between the prediction and the actual incoming stimulus
(prediction error) is fed forward for further processing through gamma
oscillations. Since prediction error is weighted by precision, a negative
correlation between pre-stimulus alpha power and post-stimulus
gamma power is predicted. This is exactly what we observed
(Fig. 5a). Next, brain areas processing prediction errors at ahigher
hierarchy provide feedback to the lower hierarchy through alpha/beta
oscillations, which is captured by the significant correlation between
post-stimulus gamma power and post-stimulus alpha/beta phase
deviation (Fig. 5b). The idea of alpha/beta phase acting as top-down
signals to resolve the bottom-up prediction error has received support
from previous auditory studies (Arnal et al., 2011; Fontolan et al.,
2014). In a recent study, Fontolan et al. (2014) showed that gamma
power in A1 was modulated by alpha/beta phase in auditory associa-
tion cortex suggesting the top-down origin of the latter. Our analysis
provides further evidence for this by showing that an early gamma
power led to a late alpha/beta phase resetting. This chronometry is an
important step for establishing a causal role of gamma power in
resetting alpha/beta phase. Collectively, these results fit very well with
recent findings suggesting that high frequency band oscillations (e.g.,
gamma) relay feedforward information and that low frequency band
(e.g., alpha and beta) oscillations relay feedback information (Bastos
et al., 2015; Michalareas et al., 2016; van Kerkoerle et al., 2014).

It is important to note a fundamental difference between the pre-
and post-stimulus spectral components. The prestimulus alpha mod-
ulation is extended in time and occurs in the absence of a stimulus and
likely represents an ongoing oscillation. The post-stimulus effects are
partly broadband in nature and are confined to a short time interval
where stimulus information is processed. It is therefore unclear to what
extent the observed post-stimulus effects originate from changes in
brain oscillations. An alternatve explanation is that the two major post-
stimulus events (gamma power and alpha/beta phase) reflect a trivial
consequence of conducting time-frequency analysis in the time window
overlapping with evoked responses in the above within- and between-
condition analysis. However, this scenario is not consistent with our
results. Specifically, no signficant information was carried in the theta
band, where the strongest activation was found in the time window of
the evoked componenent after time-frequency analysis. Instead, only
the post-stimulus gamma power and alpha/beta phase were identified
as critical in the proposed sequence of neural information processing.
Furthermore, the frequency bands of relevance identified in the current
study (around 100 Hz for high gamma power and 12–14 Hz for alpha/
beta phase) correspond very well with previous studies based on
intracranial recordings (Arnal et al., 2011; Flinker et al., 2010). Thus
a coherent and consistent explanation of our data requires the
existence of functionally distinct frequency components in the recorded
brain activity.
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5. Conclusion

In summary, our results support an involvement of low-frequency
auditory oscillations for mediating the sensory attenuation effect in
evoked responses. Our findings are consistent with a predictive coding
account of sensory attenuation that rests on auditory oscillations for
gain control of sensory evidence. They also corroborate recent findings
by providing evidence for hierarchical information processing in the
brain mediated by gamma (bottom-up) and alpha/beta (top-down)
oscillations.
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