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Variability of Bayes Factor estimates

in Bayesian analysis of variance
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Abstract Bayes Factor estimation for Bayesian Analysis of Variance (ANOVA) typically relies on

iterative algorithms that, by design, yield slightly different results on every run of the analysis. The

variability of these estimates is surprisingly large, however: The present simulations indicate that

repeating one and the same Bayesian ANOVA on a constant dataset often results in Bayes Factors

that differ by a factor of 2 or more within only a few runs when using common analysis proce-

dures. Results may at times even suggest evidence for the null hypothesis of no effect on one run

while supporting the alternative hypothesis on another run. These observations call for a cautious

approach to the results of Bayesian ANOVAs at present, and I outline three possibilities to circum-

vent or minimize this limitation.
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Introduction
Statisticians and methodologists of Bayesian conviction

have often argued against the use of p-values and classical
null-hypothesis significance testing (NHST) in recent years

(w07; e.g., Dienes, 2011; Krueger, 2001). Besides concep-
tual and metatheoretical tensions between Bayesian and

NHST approaches, one practical argument that has been

highlighted in this discussion is the assertion that p-values
were a rather fleeting metric: If sampling from the same

population, two studies of equal sample size will almost al-

ways produce different p-values, and the actual numerical
difference can be sizeable at times (Boos & Stefanski, 2011;

Halsey, Curran-Everett, Vowler, & Drummond, 2015).

It is typically proposed that alternative statistics such as

Bayes Factors help to resolve this issue by providing amore

stable metric (Jeon & De Boeck, 2017). This claim is debat-

able for at least two reasons, however. First, analyses with

simple Bayesian and NHST methods typically show simi-

lar results. That is: If a comparison of two sample means

via a t-test – arguably one of the most common NHST pro-
cedures – yields a small p-value then the corresponding
Bayesian t-test will also yield a low BF01 (high BF10) and

vice versa (Wetzels et al., 2011). These observations sug-

gest that statistical analyses via t-tests will produce com-
parable results irrespective of whether researchers look at

their data through Bayesian or NHST eyes, indicating that

both methods yield comparable information.

The second issue arises for study designs that are more

complex than the comparison of two sample means. Such

designs are commonplace in psychological research, and I

will focus on factorial designs that lend themselves to mul-

tifactor Analyses of Variance (ANOVAs). In these situations,

contemporary Bayesian methods draw on iterative com-

putational methods, especially Markov Chain Monte Carlo

(MCMC) sampling, to arrive at computationally tractable

algorithms. The numerical results of Bayesian analyses

will thus vary even if the same analysis is repeated for

one and the same dataset (Rouder, Morey, Speckman, &

Province, 2012). The extent of this variation can be sur-

prising, however, as I will demonstrate in a set of simula-

tions. That is: Running the same analyses several times

on the same data will provide substantially different Bayes

Factors at times.

Simulation methods
For all following simulations, I assumed a 2 × 2 mixed
design with one between-subjects factor and one within-
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Table 1 Exemplary Bayes Factors for repeated analyses of the same dataset with a Bayesian Analysis of Variance. Three

datasets each were simulated by assuming either no difference between the four conditions of a 2 × 2 design (H0) or

by assuming an interaction effect (H1). Bayes Factors are reported for the interaction term with the null model in the

numerator (BF01). Seeded random number generation was used to provide reproducible results (see osf.io/4djnb/ for

the corresponding datasets).

H0 H1

Seed Seed

Run 141130 170703 190730 141130 170703 190730

1 40.44 24.42 39.99 0.05 2.27 13.30

2 41.49 23.80 40.99 0.05 2.55 32.58

3 40.54 25.01 42.89 0.05 2.56 32.61

subject factor. I opted to keep group sizes rather small at

n = 22 participants per level of the between-subjects fac-
tor to accommodate a high number simulations per time.

As an initial test, I created six different datasets and per-

formed a Bayesian ANOVA three times on each dataset by

using the R package BayesFactor (note that other software

packages such as JASP use comparable algorithms so that

the results reported here are not specific to this particu-

lar implementation; Rouder, Morey, Verhagen, Swagman,

& Wagenmakers, 2017).

Three of the six datasets were created by assuming that

the null hypothesis (H0) of no effect is true. I therefore

created 88 data points for each dataset using the rnorm

function (mean: 0; standard deviation: 1; code for all

simulations is available on the Open Science Framework:

osf.io/4djnb/). These data points were then distributed

evenly across the four conditions of the hypothetical 2× 2
design. The other three datasets were created by assuming

that there was in fact a systematic difference between the

sample means (i.e., assuming the alternative hypothesis,

H1). To this end, I used the initial datasets but added a sec-

ond set of normally distributed random numbers (mean:

0.5, standard deviation: 1) to one of the design cells, thus

implementing an interaction effect. All following Bayes

Factors focus on this interaction while I omit the Bayes

Factors of both main effects, because one of the hallmark

features of ANOVA designs is the possibility of observing

interactions between two or more factors. All other set-

tings, specifically the scale parameter on the effect size,

were kept at the default setting as implemented in ver-

sion 0.9.2 of the BayesFactor package, assuming that this

value will be the most common setting employed by the

package’s user base. This includes the default setting of

10,000 iterations for the MCMC sampler(s) used. In or-

der to report results that are reproducible, I performed

these initial simulations using three different seeds of the

Mersenne-Twister random number generator (Matsumoto

& Nishimura, 1998) as implemented in R3.6.1. Seeds were

chosen arbitrarily to reflect the birthdays of three junior

scientists who had commented critically on this project

(YYMMDD). To ensure that the results reported above are

not due to unforeseen peculiarities of the single dataset or

the specific random seed selected, I further conducted a

larger-scale simulation without enforcing a specific seed

on the random number generator. To this end, I con-

structed 1,000 datasets assumingH0 and 1,000 datasets as-

suming H1 as in the previous simulations. For each of

these datasets I repeated a Bayesian ANOVA 100 times for a

total of 100,000 tests underH0 and 100,000 tests underH1,

again focusing on the interaction term only.

Simulation results
Table 1 shows Bayes Factors quantifying the evidence in fa-

vor of the null hypothesis over the alternative hypothesis

for the interaction effect of the hypothetical 2 × 2 design
(BF01; Rouder, Speckman, Sun, Morey, & Iverson, 2009).

The variation across the analyses of each dataset is clearly

visible at the level of precision that is usually reported

in empirical journal articles (i.e., at two decimal places).

Especially the last dataset (simulation assuming H1, seed

= 190730) shows considerable variability with the highest

BF01 = 32.61 being 2.45 times larger than the smallest
BF01 = 13.30.
To get a better sense of the variability of Bayes Factors

in this situation, I restricted the analysis to one single seed

of the random number generator (seed = 200123, corre-

sponding to the date I began working on the simulations

in January 2020). I generated a single dataset assuming

H0 and repeated a Bayesian ANOVA 10,000 times on this

dataset. Figure 1 shows the surprising result of these sim-

ulations: While the most conservative outcome suggested

substantial evidence for the null hypothesis (BF01 > 3 ⇔
BF10 < 1/3), the most progressive outcome turned out to
suggest substantial evidence for the alternative hypothesis

instead (BF01 < 1/3⇔ BF10 > 3).
The larger-scale simulation of 100 runs for each of

1,000 datasets for each hypothesis mirrored these results.

For simulations underH0, 91.58% of the Bayes Factors sug-
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Figure 1 Most extreme outcomes of 10,000 repetitions of the same Bayesian ANOVA on one randomly generated dataset

(see osf.io/4djnb/ for the corresponding dataset). The iterative procedure yielded Bayes Factors favoring H0 over H1,

Bayes Factors favoringH1 overH0, as well as undecisive results in between. The dataset assumed a 2× 2mixed design
with mean results for each of the four conditions plotted in the central panel. Error bars show standard errors of paired

differences for comparing the two within-subject conditions of each group (i.e., per level of the between-subjects factor;

Pfister & Janczyk, 2013).

gested substantial evidence forH0 (BF01 > 3) with 1.02%
of the Bayes Factors incorrectly supporting H1 (BF01 <
1/3), and 7.39% indicating no support for either hypothe-
sis. For simulations under H1, only 17.23% of the Bayes

Factors correctly suggested substantial evidence for H1

(BF01 < 1/3) with 52.44% of the Bayes Factors incorrectly
supporting H0 (BF01 > 3), and 30.33% indicating no sup-
port for either hypothesis (these results reflect the conser-

vative nature of Bayes Factor analyses when sample sizes

are relatively small).

To quantify the variability of Bayes Factors, I computed

the ratio of the largest relative to the smallest Bayes Fac-

tor across the 100 runs on each dataset. Figure 2 shows

the mean ratio and the distribution of the individual ra-

tios. For both data simulated based on H0 and data sim-

ulated based on H1 the mean ratio was larger than 2, i.e.,

the larger BF01 indicated twice as much evidence for H0

over H1 as the lower BF01 on average. On top, a sizeable

percentage of the ratios exceeded 10, indicating rather dra-

matic deviations across the results of the Bayesian ANOVA

on a constant dataset.

Closer inspection of the simulation results revealed

that for five datasets, the 100 Bayes Factors ranged from

substantial evidence forH0 to substantial evidence forH1

as for the dataset shown in Figure 1. The corresponding

ratios of the largest relative to the smallest BF01 for each

dataset ranged from a ratio of 13.08 to an extreme ratio of

803.34 (see Table 2). Figure 3 shows detailed distributions

of the individual Bayes Factors for each of the five cases.

An additional metric to assess the variability of Bayes

Factors across iterations of the same Bayesian ANOVA is

assessing the number of datasets for which the direction

of the evidence changes so that some BF01 are smaller

than 1 and other BF01 are larger than 1 for the same

dataset (with 1 indicating no preference for either hypoth-

esis whatsoever). For the 1,000 datasets sampled assuming

H0, 31 datasets came with this property (3.1%) whereas

for the 1,000 datasets sampled assuming H1 this number

amounted to 108 datasets (10.8%). Even though such be-

havior would sometimes be expected for any random sam-

pling procedure, these observations again suggest consid-

erable variability.

Conclusions
The present results attest considerable variability of Bayes

Factors for a factorial research design that is routinely em-

ployed in psychological research. Reports of individual

Bayes Factors from Bayesian ANOVAs should therefore be
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Figure 2 Results of 100 repetitions of a Bayesian ANOVA for each of 1,000 datasets simulated based on H0 and H1, re-

spectively. The left panel shows the mean ratio of the largest BF01 to the smallest BF01 across the datasets whereas the

right panels indicate the distribution of the individual ratios.

Table 2 Detailed results of the five cases that returned Bayes Factors supporting H0 and H1 for one and the same

dataset. There were 100 repetitions of the same Bayesian ANOVA on each dataset and the table lists the smallest BF01

(BFmin), the largestBF01 (BFmax) and the ratio of both.

Dataset BFmin BFmax BF ratio
#1 |H0 0.17 17.09 102.69

#2 |H0 0.04 31.52 803.34

#1 |H1 0.30 3.86 13.08

#2 |H1 0.24 4.67 19.64

#3 |H1 0.17 6.04 35.77

interpreted with increased caution. Whether the results

generalize to further study designs (e.g., purely between-

subjects ANOVAs or designs with a larger number of fac-

tors or factor levels), different samples sizes, population ef-

fect sizes, assumed priors and corresponding scale param-

eters remains to be explored, though informal tests indi-

cate that considerable variability is present in a large range

of scenarios. This state of affairs seems to limit the value

of the results of such computational methods at present.

As a further disadvantageous consequence, the results of

a Bayesian ANOVA with two factor levels do not map onto

Bayesian t-tests as is the case in classical NHST procedures.
Three solutions may help to overcome the variability

attached to Bayesian ANOVAs. A first and straightforward

solution is to employ common NHST methodology and

compute traditional ANOVA statistics when analyzing fac-

torial designs. While NHST methods have some favorable

properties in the face of existing effects, Bayesian methods

have the useful property of tending to return larger Bayes

Factors in favor of the null hypothesis of no effect as sam-

ple sizes increase when there is no effect in the popula-

tion (the p-value of traditional ANOVAs will still be lower
than .05 in 5% of the cases by design). This advantage

in quantifying evidence for the null hypothesis of no ef-

fect is offset by the variability attached to Bayes Factors in

factorial designs. It might thus be useful to consider rely-

ing on NHST results in this case, too, but to interpret the

data with the required caution (also drawing on additional

factors such as sample size and quality of the employed

methods and instruments; Trafimow et al., 2018). Sec-

ond, if one is reluctant to use NHST methods in this case,

it is possible to turn to alternative Bayesian methods that
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Figure 3 Distribution of the 100 Bayes Factors of each of the five datasets that yielded evidence for both H0 and H1

across the repetitions of the Bayesian ANOVA. The y-axis is capped at 20 for better readability of outlier results (marked

by the shaded rectangle); numbers in the plots indicate the exact frequency of categories that occurred more often than

20 times.

provide stable estimates. In case of the current version of

the BayesFactor package, such an option is an alternative

algorithm using Laplace approximation. Because this op-

tional algorithm does not use any sampling, it will provide

stable results across runs (Schillings, Sprungk, & Wacker,

2020; for alternative algorithms with stable, analytic re-

sults, see Chen, Villa, & Ghattas, 2017; Schillings & Schwab,

2013). At the same time, Laplace approximation can return

systematically different results than (many iterations of)

MCMC-based methods, especially when sample sizes are

small. If such option is not feasible for the data at hand

or if it is not available in a researcher’s analysis software

of choice, it would also be possible reduce factorial designs

to t-tests if the relevant factors only include two factor lev-
els. Bayesian t-tests (Rouder et al., 2009) thus provide a
more reliable fallback option for these designs with simi-

lar results as classical t-tests in the NHST framework (Wet-
zels et al., 2011). A third but computationally intensive op-

tion is to increase the number of iterations for MCMC sam-

pling or to compute a set of Bayesian ANOVAs and report

the (trimmed) mean of the resulting Bayes Factors. For the

present approach, increasing the sampler’s number of it-

erations to 100,000 instead of the default 10,000 iterations

yielded Bayes Factor ratios of 1.95 (H0) and 1.86 (H1) in a

re-run of the simulations for 300 newly simulated datasets,

as compared to the mean ratios of 3.45 (H0) and 2.27 (H1)

as shown in Figure 2. Similarly, trimming 5% of the Bayes

Factors from the left and right tail reduced the Bayes Factor

ratios to 1.18 (H0) and 1.17 (H1) on average for the datasets

discussed in the results sections , suggesting that a sizeable

portion of the variability can be reduced in this way.

Future directions
The simulation results underlying the above conclusions

represent only a snapshot of the vast parameter space that

likely affects the variability of Bayes Factors for factorial

designs. Even though the present results are alarming in

any case, matters might be different in alternative scenar-

ios, with plausible influences on variability resulting from

the nature of the data at hand and resulting from the em-

ployed analyses. Parameters relating to the data at hand

include the sample size, effect sizes for main effects and
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interaction, as well as the magnitude of inter-individual

correlations in within-subjects designs, whereas parame-

ters relating to the analysis include the chosen sampling al-

gorithm, the corresponding number of iterations (as high-

lighted above), and the choice of priors for the effects in

question. An additional influence is the complexity of

the study design and the corresponding statistical model

(Rouder et al., 2012). Carefully exploring this parameter

space will allow for specifying when the results of current

algorithms are relatively reliable and when they are to be

treated with caution.

Authors’ note
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