Julius-Maximilians-

BACKGROUND:

- Executing two actions at the same time (instead of one) is typically associated with performance costs (dual-action costs; e.g., Pashler, 1994)
- Sometimes, executing two actions can be easier when the execution of one action requires the simultaneous inhibition of another, prepotent action (dual action *benefits*; Huestegge & Koch, 2014; Kürten et al., 2022)
- Failures to inhibit a prepotent action under single-action requirement characterized by false-positive executions \rightarrow the more inhibition failures, the greater the relative dual-action benefit

PRESENT STUDY

- Prepotent eye-movements (saccades) *and/or* manual button presses
- Single peripheral visual target (cf., Fagot & Pashler, 1992)
- Spatially compatible actions
- Randomly switching single-action and dual-action requirements
- Manipulation of preparation time via the cue-stimulus interval (CSI)
- Cue only indicated the relevant effector system(s) in the current trial
- If participants flexibly use this information for simultaneous preparation of inhibitory and executive control, we expect decreasing rates of inhibition failures (and thus decreasing dual-action benefits) as well as decreasing RTs with prolonged preparation time

METHODS (Trial Structure)

Getting Ready (Not) to Act: How Preparation Time Determines Inhibitory **Control Underlying Dual-Action Benefits in Multiple Action Control** Jens Kürten, Tim Raettig, Julian Gutzeit, Lynn Huestegge

Contact: jens.kuerten@uni-wuerzburg.de

Flexible preparation for concurrent inhibitory and executive action control is possible on the level effector-system representations.

Manual

--- Dual

Errors

100	400	700	1500	CSI (ms)	100	400	700	1500	
		Saccade				Manual			
	df	F	р	η_p^2	df	F	р	η_p^2	
RD	2, 94	56.1	< .001	.54	2, 94	6.6	.005	.12	
CSI	3, 141	91.6	< .001	.66	3, 141	13.9	< .001	.23	
RD:C	CSI 6, 282	92.8	< .001	.66	6, 282	4.9	.002	.10	
	2.04	117.40	< 001	71	2.04	10 5	< 001	10	
RD	2, 94	110.40	< .001	./1	2, 94	10.5	< .001	.18	
CSI	3, 141	24.70	< .001	.35	3, 141	1.9	.149	.04	
RD:C	CSI 6, 282	24.60	< .001	.34	6, 282	2.6	.039	.05	

SUMMARY & DISCUSSION

- Errors
- Stronger inhibition-based dual-action benefits in saccades compare with manual responses
- Reduction of inhibition failures with increasing preparation time in both action modalities

REFERENCES

- and Performance, 18(4), 1058–1079.
- Huestegge, L. & Koch, I. (2014). When two actions are easier than one: how inhibitory control demands affect response processing. Acta Psychologica, 151, 230–236. failures in multiple action control. *Psychological Research*.
- Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. *Psychological Bulletin*, 116(2), 220–244.

ared	
'n	

o RTs

• Dual-action costs in both action modalities

• Reduced response latencies in both action modalities with increasing preparation time

• Fagot, C. & Pashler, H. (1992). Making two responses to a single object: implications for the central attentional bottleneck. Journal of Experimental Esychology. Human Perception

• Kürten, J., Raettig, T., Gutzeit, J., & Huestegge, L. (2022). Dual-action benefits: Global (action-inherent) and local (transient) sources of action prepotency underlying inhibition

ADDITIONAL DATA

• Exploratory analyses of false-positive saccade RTs in Single Manual Trials

	Saccade						
	df	F	р	η_p^2			
RD	2, 94	16.33	< .001	.37	Ш		
CSI	3, 141	49.73	< .001	.64	хр		
RD:CSI	6, 282	19.84	< .001	.42	<u>с</u>		
RD CSI RD:CSI	2, 94 3, 141 6, 282	25.70 44.83 14.84	< .001 < .001 < .001	.43 .57 .30	Exp 2		

SUMMARY (Error RTs)

- Saccade Error RTs
- False-positive saccades slower than correct responses
- Error RTs unaffected by CSI

Funded by

DEG Deutscne Forschungsgemeinschaft German Research Foundation