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Summary
Frequency graph types differ in the way how data are translated into visual representations. We

compared 2 visualization methods, a traditional circular representation (pie chart) and a rectangu-

lar representation (constant column width tree map), which were hypothesized to differ regarding

the cognitive ease of visual comparison processes. Performance was evaluated in tasks involving

proportion and comparison judgments under both highly controlled and more realistic circum-

stances. The results showed performance benefits (in terms of reduced response times or error

rates) for rectangular representations. Additional eye movement analyses revealed that this ben-

efit was mainly due to a facilitation of scanning the graph for relevant information. The results

suggest that facilitating comparison processes by representing the critical variable in less complex

visual dimensions (i.e., straight length with constant orientation instead of surface area or curved

length) eventually enhances the efficiency of integration processes during graph comprehension.
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1 | INTRODUCTION

The increase of computational power and networking over the last

decades resulted in a massive increase of available quantitative data—

a phenomenon commonly referred to as Big Data. This calls for efficient

data reduction techniques (Press, 2013), for example, by utilizing

visualization methods including various types of graphs. Graphs are a

common tool to display large sets of quantitative information within

relatively small space (Larkin & Simon, 1987) and do not only occur in

all fields of science but also in public print media and in the classroom.

Therefore, studying the cognitive processes underlying graph

comprehension along with the aim to optimize the display of data in a

theory‐driven manner represents an important mission within the field

of cognitive science. This study focuses on visualization techniques for

one of the most widely used type of quantitative data depicted in

graphs, namely, categorical (relative) frequency data. Pie charts and

bar graphs are the most commonly used graph types in this context

and are readily supported by standard spreadsheet software

(Harris, 1999). Here, we will compare graph comprehension perfor-

mance resulting from two graph types that presumably differ in the

extent to which they draw on cognitive processes, namely, traditional

(circular) pie charts and a newly developed (rectangular) alternative, a
wileyonlinelibrary.com/journal
specific variant of the increasingly popular tree maps (see www.cs.

umd.edu/hcil/treemap‐history).

Guidelines for graph designwere often derived by postulating intu-

itively plausible principles, for example, maximizing the “data‐ink ratio”

(Tufte, 2001; see also Kosslyn, 1994). However, in recent years, many

aspects of graph design were also evaluated empirically (e.g., Carpenter

& Shah, 1998; Carswell, Frankenberger, & Bernhard, 1991; Fischer,

2000;Huestegge&Philipp, 2011; Körner, Höfler, Tröbinger, &Glichrist,

2014; Peebles &Cheng, 2003; Ratwani, Boehm‐Davis, & Trafton, 2008;

Riechelmann & Huestegge, in press; Shah & Carpenter, 1995; Siegrist,

1996; Spence, 1990; Zacks, Levy, Tversky, & Schiano, 1998). Prior to

presenting a brief overview of empirical findings relevant for our pres-

ent study,wewill first outline some theoretical considerations regarding

the cognitive processes underlying graph comprehension to derive

relevant implications for the representation of frequency data.
2 | COGNITIVE PROCESSES DURING GRAPH
COMPREHENSION

Many theoretical accounts of graph comprehension have been pro-

posed about 20–30 years ago based on both formal task analyses and
Copyright © 2018 John Wiley & Sons, Ltd./acp 1
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2 HUESTEGGE AND POETZSCH
empirical research (e.g., Bertin, 1983; Cleveland & McGill, 1984, 1986,

1987; Gillian & Lewis, 1994; Kosslyn, 1989; Lohse, 1991, 1993;

Pinker, 1990). One central concept in many of these theories, which is

important in the context of this study, is the notion of cognitive integra-

tion processes, which are essential for graph comprehension whenever

distinct graphs elements and/or their meanings need to be linked. They

are especially relevant when several elements in a graph need to be

compared (e.g., to make comparison and proportion judgments, see

Simkin & Hastie, 1987). For example, Carpenter and Shah (1998)

proposed a flexible model that can account for such integration

processes. Specifically, it suggests three processing stages, namely, a

pattern recognition stage involving the encoding of a visual pattern by

chunk formation, and two interpretative stages. The first interpretative

stage involves translating the visual pattern into its quantitative and

qualitative interpretation and also comprises arithmetic operations on

encoded values and the comparison of spatial relations of indicators

or shares (i.e., integrating visual features, see Gillian & Lewis, 1994).

The second interpretative stage relates these decoded patterns to the

referents in the graph (see Huestegge & Philipp, 2011; Zacks & Tversky,

1999). The efficiency of this latter process is also determined by graph

design features, for example, direct labeling versus a legend (affecting

data‐legend integration). According to Carpenter and Shah (1998),

these three stages are assumed to be repeated in a cyclical fashion,

which is reflected in corresponding graph readers' gaze transitions

between respective graph regions (e.g., main graphical pattern, axes,

legend, and title; see Bertin, 1983). Building on this framework,

Ratwani et al. (2008) further distinguished between visual and cognitive

integration processes: Whereas visual integration refers to pattern

recognition and visual cluster formation, cognitive integration involves

further reasoning about the graph based on specific task instructions.

Finally, another line of research utilizing oculomotor analyses

demonstrated that integration performance is not only determined by

specific graph types but also by user characteristics (Peebles, 2008;

Peebles & Cheng, 2001, 2003).
3 | INTEGRATION PROCESSES IN PIE
CHART COMPREHENSION

The pros and cons of different types of graphs depicting frequency data

can be related to the various integration processes referred to above.

However, it is important to note that graphs depicting frequency data

(such as pie charts) can serve different purposes, each involving differ-

ent sets of mental operations. Probably the two most basic tasks for

understanding frequency graphs (e.g., Simkin & Hastie, 1987) are

proportion judgments (i.e., estimating the size of one element relative

to the whole) and comparison judgments (i.e., comparing the size of

two elements to judge which one is larger). Principally, both tasks can

be supported by utilizing specific design features, such as direct labeling

of relative element size in percent (for proportion judgments) and size‐

based ordering of elements (e.g., in a clockwise manner for pie charts)

for comparison judgments.

However, several drawbacks of pie charts still remain: First, it

should generally be more difficult to compare surface areas of pie slices,

which are unusually complex geometrical figures involving both curved
and straight lines. Thus, it should be more difficult to judge the size of

pie slices or the length of a curved outer line (both requiring definition

in two spatial dimensions) when compared to a situation that can rely

on the comparison of a simpler, one‐dimensional feature only, such as

straight line length (e.g., in segmented bar graphs using only segment

length as relevant information). Second, the comparison of pie slices

can also be consideredmore complex in that it may involve mental rota-

tion. Specifically, on the one hand, all slices are connected at the center

of the pie, and thus, any comparison between shares are in line with the

proximity compatibility principle (Wickens & Carswell, 1995), which

assumes that when a task requires the integration of multiple sources

of information (e.g., for comparison purposes), performance will only

be optimal when that information is displayed in close spatial proximity.

On the other hand, however, the comparison is made difficult because

the relevant information (either the whole slice surface area or the

length of the curved outer line segment) needs to be transformed

(i.e., mentally rotated) to be compared. Finally, pie charts come with a

disadvantage regarding the extraction of the referents related to the

slices due to font alignment issues. Specifically, it appears difficult to

implement an easy to read, upright labeling of slices (i.e., category names

or additional information of relative frequency in percent) in many

instances, especially when many (and thus small) slices are present.

Some of these theoretical considerations have also been tested

empirically. For example, the question of whether pie charts are suited

to display percentages (i.e., for proportion judgments) was already

examined by Eells (1926), who found that bar graphs were superior.

Based on similar observations, Cleveland and McGill (1984) concluded

that pie charts should always be replaced by bar charts. Spence and

Lewandowsky (1991), on the other hand, found that combinations of

shares could sometimes be compared more easily when participants

were provided with a pie chart than with a bar graph. In line with this

finding in favor of pie charts, another study considered pie charts

useful for relative proportion judgments (Hollands & Spence, 2001).

As a response to some of the difficulties associated with comparison

processes in pie charts, Gillian and Callahan (2000) proposed the use

of specifically aligned pie charts (i.e., presenting the two to‐be‐

compared slices side by side, each aligned to the same 12 o'clock

starting point), although these never became widespread (see also

Hollands & Spence, 2001, on the issue of alignment). Other studies

reported similar proportion judgment accuracy for pie charts and bar

graphs (whereas performance for multiple stacked bar graphs was less

accurate; Simkin & Hastie, 1987). Further research comparing both

objective and subjective effects suggested that even when bar graphs

yielded lower comprehension than pie charts, participants still

subjectively preferred bar graphs (Fagerlin et al., 2007). Taken

together, the empirical evidence regarding the two visualization types

so far is rather mixed and appears to strongly depend on specific graph

characteristics and the task at hand.

One advantage that may explain some effects in favor of pie

charts referred to above is that they contain some visual cues that

may facilitate comprehension. As Eells (1926) already pointed out,

graph readers not only compare slices to the whole in a pie chart but

also to reference portions of a circle (e.g., a quarter, half, and three

quarters) to estimate shares. This concept was later referred to as

anchoring and has been shown to have significant impact on accuracy
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and reaction times in graph comprehension (e.g., Chandrasekaran &

Lele, 2010; Simkin & Hastie, 1987; Spence & Lewandowsky, 1991).

In pie charts, this mechanism appears to counteract the problem that

visual angle judgments in general are known to be quite inaccurate

(Cleveland & McGill, 1985; Simkin & Hastie, 1987).
4 | CONSTANT COLUMN WIDTH TREE
MAPS (CCW‐TREE MAPS) AS A POTENTIAL
PIE CHART ALTERNATIVE

Based on the rather mixed empirical evidence in the previous studies

reviewed above, we reasoned that it should be possible to combine

many benefits of both major graph types (pie charts and bar graphs)

while avoiding most of the respective drawbacks. To this end, we

specified a new graph type alternative for the display of frequency data.

In recent years, many new visualization techniques benefitted from

modern web technologies such as HTML5 and CSS3 and were

incorporated into modern business intelligence software or open code

libraries. A particularly successful variant of these newly emerging graph

techniques was the tree map (Shneiderman, 1992; see Figure 1). The

tree map was conceptualized as a “two‐dimensional (2‐d) space‐filling

approach in which each node [entity] is a rectangle whose area is

proportional to some attribute such as node size” (Shneiderman, 1992,

p. 1). Although Shneiderman emphasized the possibility of displaying

hierarchical data in tree maps (i.e., one can usually zoom into specific

rectangles to look at child nodes), their probably most common

application so far has been as a substitute for pie charts. For example,

some news websites present their content according to coverage and

group information accordingly into news clusters such as business,

culture, and sports (e.g., www.newsmap.jp), and recent versions of pop-

ular spreadsheet software (byMicrosoft, Google) now include treemaps

as a standard display option. Furthermore, several variants of the tree

map were derived (e.g., the clustered tree map, Wattenberg,1999, or

the squarified tree map, Bruls, Huizing, & van Wijk, 2000).

Several theoretically informed design choices were made to come

up with a viable competitor to pie charts. First, we reasoned that one

major disadvantage of the original tree map is that to estimate the size

of a share, two dimensions (height and width) need to be considered

(similar to the difficulties associated with estimating surface areas of

pie slices, see Cleveland & McGill, 1984; Kosslyn, 1994; Carswell,

1992). Therefore, we concluded that a reduction to one relevant dimen-

sion should increase computational efficiency (Spence, 1990). Thus, we
FIGURE 1 Example of a traditional tree map (Shneiderman, 1992; left
panel) and a constant column width tree map (including visual anchors
indicating quarters) used in this study (right panel)
decided to utilize only one dimension (height) to represent relevant

information, whereas the other (width) is held constant (similar to bar

width in bar graphs, see, e.g., Cleveland & McGill, 1984; Simkin &

Hastie, 1987; Spence, 1990; Friel, Curcio, & Bright, 2001). Comparison

of spatial relations between shares in such tree maps should be easier

because at least some of the relevant length information is displayed

in proximity in the same spatial orientation, rendering complex and

potentially error‐prone mental rotations (aligning) unnecessary. In con-

trast, comparison performance in pie charts is known to depend on the

angular and size differences between segments (Gillian & Callahan,

2000). In the light of this salient design feature, we will from now on

refer to the specific tree maps used in our study as CCW‐tree maps.

Second, the principle of providing visual anchors was adapted by

including the display of quadrants in the rectangular‐sized tree maps.

Third, one potential general advantage of tree maps relates to labeling

options. Usually, tree maps are labeled directly, which is much easier to

implement in rectangular than in circular graphs. Utilizing direct label-

ing is typically considered to increase efficiency of integration pro-

cesses (e.g., Gillan, Wickens, Hollands, & Carswell, 1998; Kosslyn,

1994). Furthermore, direct labeling also implies that CCW‐tree maps

can be considered more space efficient than pie charts (which often

include labels located outside the pie), which may also reduce the need

for extended eye movements (and associated processing time).

Additionally, CCW‐tree map labeling allows for more natural reading

patterns when compared with the relatively unusual circular

arrangement of text (implying clockwise reading) in pie charts

(see Huestegge & Radach, 2012; Huestegge, Radach, Kunert, &

Heller, 2002, for evidence suggesting that visual search typically fol-

lows reading‐like paths). Finally, direct labelling should prevent unnec-

essary attentional “cycling” back and forth between the legend and the

indicators/shares (Carpenter & Shah, 1998; Ratwani et al., 2008;

Trafton, Marshall, Mintz, & Trickett, 2002). The issue of labeling will

be explicitly addressed in Experiment 3.
5 | THIS STUDY

Taken together, our theoretically informed design decisions led to the

development of the CCW‐tree maps as a potential competitor for pie

charts (see Figure 1). CCW‐tree maps were designed to combine the

benefits of pie charts (e.g., by providing visual anchors), original tree

maps (comparatively easier labeling and thus enhanced space effi-

ciency), and bar graphs (accurate, uni‐dimensional length code). Based

on our design decisions, we reasoned that CCW‐tree maps should

principally be easier to process than pie charts, resulting in shorter

response times (RTs) and/or fewer errors. However, it is important to

note that experience and previous knowledge (see Pinker, 1990) also

play an important role for the efficiency of integration processes. For

example, both familiar graph layouts and data patterns reflecting

expectations based on real‐world knowledge yielded faster and/or

more accurate graph comprehension (Fischer, Dewulf, & Hill, 2005;

Gattis & Holyoak, 1996; Shah, 1995). In the context of the present

research, it is thus a relevant question whether the presumable effi-

ciency gains regarding integration processes in CCW‐tree maps out-

weigh potential drawbacks associated with a less familiar

http://www.newsmap.jp
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visualization (when compared with the more frequently used pie

charts). The overall aim of this study was thus to compare the two

types of graphs in the context of two different tasks (proportion and

comparison judgments), and under both experimentally controlled as

well as more natural conditions.

Four experiments were conducted with graph type (pie chart vs.

CCW‐tree map) as a within‐subject factor (i.e., all blocks of trials

contained both pie charts and CCW‐tree maps). Whereas Experiment

1 examined the accuracy of participants' proportion judgments, Exper-

iment 2 addressed comparison judgments. Whereas the first two

experiments involved highly controlled stimulus material, Experiment

3 aimed at determining whether any advantage of CCW‐tree maps

also transfers to more realistic visualization circumstances by taking

typical graph labeling (semantic context) into account. Apart from

overall performance‐related parameters (RTs, error rates), we addition-

ally recorded eye movements for exploratory analyses in these three

experiments. We reasoned that more difficult visual integration pro-

cesses for pie charts could be observable in terms of greater oculomo-

tor effort (e.g., Carpenter & Shah, 1998; Huestegge & Philipp, 2011;

Körner et al., 2014; Peebles & Cheng, 2003; Ratwani et al., 2008;

Renshaw, Finlay, Tyfa, & Ward, 2004). Finally, Experiment 4 focused

on more realistic data sets that cannot be evenly divided into two

50% shares (which was a prerequisite of designing perfectly rectangu-

lar CCW‐tree maps in Experiments 1–3) and also involved single‐

stacked bar graphs as a third type of graph layout.
6 | EXPERIMENT 1: PROPORTION
JUDGMENTS

Experiment 1 compared pie charts and CCW‐tree maps with respect to

proportion judgment performance. Specifically, participants were

asked to estimate the size of a single share (in %). Given that judging

the relative size of a single share implicitly also involves a comparison
with the size of the remaining portion of the graph (single‐whole com-

parison), we reasoned that the ease of integration processes should

also play a role for performance in this task. Thus, if our measures to

facilitate integration processes via the CCW‐tree maps are effective

and their positive effects outweigh any advantages associated with a

greater familiarity with pie charts, we expected that performance (in

terms of RTs, judgment accuracy, and/or oculomotor effort) should

be better for CCW‐tree maps than for pie charts.

6.1 | Method

6.1.1 | Participants

Experiments 1–3 were conducted in fixed sequence with the same set

of participants, which were recruited via social media. All participants

(N = 15, 6 male, 9 female, mean age = 22 years, SD = 2.6, range:

19–28) were university students or had recently completed their study

program (most of them were enrolled in Psychology). All participants

were fluent German speakers.

6.1.2 | Stimuli

For creating the stimulus material, 30 frequency data sets were con-

structed. These data sets were used to create 30 pie charts and 30 cor-

responding CCW‐tree maps, respectively (i.e., the same data set was

displayed in both ways; see Figure 2). The area covered by each pie

(slice) and the corresponding CCW‐tree map (rectangles) was kept

constant.

The data sets involved five, seven, or nine indicators (10 data sets

for each condition). All indicators of one data set referred to different

percentage values. None represented a share less than 5% (to avoid

issues related to very small segments/labels), and indicators were

always dividable into two groups of 50% each. This restriction was

due to an inherent limitation of CCW‐tree maps for our present

purpose: To achieve an overall rectangular shape of the graph that is

similar to the coherent circular shape of pie charts, the shares needed
FIGURE 2 Examples of stimuli used in
Experiments 2 (upper panel) and 3 (lower
panel, German labels referring to vegetables).
Experiment 1 involved similar stimuli as in
Experiment 2, but with additional visual
anchors (see text for details). Furthermore, in
Experiment 1 (unlike in Experiment 2), shares
were labeled in alphabetical order



HUESTEGGE AND POETZSCH 5
to be organized into two columns of identical width (both columns

representing 50%).

All indicators were labeled directly using letters, and percentage

values were not explicitly displayed. In each graph, all shares were

sorted according to their size (starting from the top and in clockwise

orientation for pie charts, and from top to bottom for CCW‐tree maps).

In Experiment 1, the biggest indicator was always labeled “A,” the

second biggest “B,” etc. All stimuli (pie charts and CCW‐tree maps) in

Experiment 1 (but not those in Experiment 2) had additional visual

anchors (dashed lines at 90°, 180°, and 270° for pie charts, and a

dashed horizontal line in the middle of CCW‐tree maps). The

experiment consisted of 120 trials; therefore, each data set was used

four times (i.e., each pie chart and each tree map was presented two

times). Trial order was randomized but remained constant for all

participants.

A brief subjective follow‐up survey administered immediately

after the run of the first three experiments additionally examined

which of the two visualization methods (forced choice) was perceived

as (a) more pleasant and (b) a more accurate basis for judgments.

Although the response rate for this survey was only 73%, 55%

(vs. 45%) of the responders stated that pie charts were “more pleasant

to use” than CCW‐tree maps, whereas only 27% (vs. 73%) stated that

pie charts “led to more accurate judgments” than CCW‐tree maps.

These introspective results suggest that CCW‐tree maps tended to

be perceived as supporting more accurate performance than pie

charts, even though the underlying sample size is too small for mean-

ingful statistical conclusions.
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FIGURE 3 Accuracy and response time results in Experiment 1 as a
function of graph type and number of indicators. Error bars represent
standard errors of the mean
6.1.3 | Procedure

For eye tracking purposes, an EyeLink 1000 (SR Research, Ontario,

Canada) system was used in a stationary setup. The experiments were

programmed using Experiment Builder software (SR Research). Partic-

ipants sat 50 cm in front of a screen with a display resolution of

1024 * 768 pixels. Participants were first familiarized with the concept

of the newly developed CCW‐tree maps (all participants reported to be

familiar with pie charts). Specifically, participants were instructed how

CCW‐tree maps were constructed and how they code shares. Note,

however, that we did not reveal any information regarding size order-

ing of the shares for either one of the two graph types.

Each experiment started with a calibration of the eye tracker. At

the beginning of each experimental trial, a question was presented

on the screen (e.g., “How big is share A?”). The identity of the probed

share varied from trial to trial in a random manner. After encoding

the question, participants pressed the space key, which triggered a

central fixation cross in the middle of the screen (1,500 ms), followed

by the graph. The midpoint of each graph was always located at the

screen center. The onset of the oral answer was used to calculate

RTs using the built‐in voice key functionality in the Experiment Builder

software. The content of the answer was recorded by the investigator.

The investigator also noted failed trials (when other sounds than the

answer triggered the voice key or when the participant's response

was too quiet to trigger the voice key), which were excluded from data

analysis. On average, the three experiments lasted 50 min in total,

including short breaks between experiments.
6.1.4 | Design and data analysis

The independent variables in this experiment were graph type (pie

chart vs. CCW‐tree maps) and the number of indicators per graph (five,

seven, or nine). The dependent variables were accuracy (defined as the

absolute difference between estimated and actual indicator size) and

RTs; 2 × 3 repeated measures ANOVAs were conducted unless

otherwise indicated. Apart from standard parameters of eye

movement analyses (number of fixations, mean fixation duration, and

mean saccade amplitude), we further analyzed mean (horizontal and

vertical) fixation position and fixation dispersion as an additional index

of oculomotor effort as well as relative directional distributions of

saccades (i.e., the relative frequency of leftward, rightward, upward,

and downward saccades) as indices of search systematicity.
6.2 | Results and discussion

The ANOVA for absolute accuracy revealed a significant main effect of

the number of indicators, F(2, 28) = 12.25, p < .001, ηp
2 = .467, indicating

that in the context of the present proportion judgment task, accuracy

increased with the number of indicators in the graph (mean absolute

deviation = 2.42, 1.69, and 1.71 for five, seven, and nine indicators,

respectively; see Figure 3). Although there was no main effect of graph

type, F < 1, we observed a significant disordinal interaction of number of

indicators and graph type, F(2, 28) = 6.99, p < .01, ηp
2 = .333. Specifically,

although accuracy tended to be greater for pie charts than for CCW‐

tree maps when there were only few indicators, this difference was

reversed in the condition with a maximum number of indicators (nine),

where the results suggest an advantage of CCW‐tree maps over pie
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charts. However, post hoc pairwise comparisons revealed no significant

simple main effects of graph type in the individual number of indicator

conditions (p = .059, p = .741, and p = .165 for three, five, and seven

indicators, respectively).

As an alternative accuracy analysis, we additionally looked at the

relative (instead of absolute) deviation of the estimated value from

the real value. In this analysis, there was no longer a significant main

effect of the number of indicators, F(2, 28) = 2.09, p = .142, nor a sig-

nificant main effect of graph type, F(1, 14) = 1.24, p = .284, but still a

significant interaction, F(2, 28) = 11.89, p < .001. Here, post hoc

pairwise comparisons revealed a significant simple main effect of graph

type in the five indicators condition (tree maps: 19.3% mean deviation,

SE = 2.6; pie charts: 11.5% mean deviation, SE = 0.9, p = .004), but no

significant differences in the seven indicators condition (tree maps:

13.1% mean deviation, SE = 1.4; pie charts: 14.1% mean deviation,

SE = 1.2, p = .598), nor in the nine indicators condition (tree maps:

15.9% mean deviation, SE = 1.3; pie charts: 17.7% mean deviation,

SE = 1.6, p = .249).

The RT analysis revealed a somewhat different picture (Figure 3).

Again, there was a significant main effect of the number of indicators,

F(2, 28) = 6.83, p < .01, ηp
2 = .328, indicating that RTs increased with

an increasing number of indicators in the graph (M = 4,768, 5,048,

and 5,389 ms). The RT data also revealed a significant main effect of

graph type, F(1, 14) = 9.12, p < .01, ηp
2 = .394, suggesting faster overall

RTs for CCW‐tree maps (M = 4,899 ms) as opposed to pie charts

(M = 5,238 ms). A significant interaction of number of indicators and

graph type, F(2, 28) = 3.73, p = .037, ηp
2 = .210, suggests that the

advantage of CCW‐tree maps was only present for graphs with a small

number of indicators (i.e., in the five and seven indicators conditions,

p < .03 and p < .03, respectively), but not in the condition with the

maximum number of (nine) indicators, t < 1.

To come up with a more comprehensive, performance‐related

interpretation of the data, it is important to consider the results

regarding both accuracy and RT at the same time. For example,

regarding the graphs of low complexity (i.e., those with five indicators),

it is difficult to come up with a final conclusion regarding overall

performance benefits of one graph type over the other due to a

speed‐accuracy trade‐off (i.e., CCW‐tree maps were processed faster,

but with a tendency towards lower accuracy than pie charts). A similar

ambiguous picture emerges for the more complex graphs (seven and

nine indicators), where no clear performance advantages for pie charts

or CCW‐tree maps regarding both parameters (accuracy and RTs)

emerged. Overall, we thus conclude that the data in Experiment 1

suggest roughly comparable overall performance for CCW‐tree maps

and pie charts. However, these results are far from conclusive, and it

will thus be interesting to examine the extent to which a clearer

advantage might show up under task conditions that further

emphasize comparison processes (see Experiment 2).

Regarding the effect of the number of indicators, it appears

plausible to assume that the increase in time spent on the more

complex graphs (i.e., those with more indicators) ultimately allowed

participants to come up with greater overall proportion judgment

accuracy. Furthermore, it appears conceivable that greater

segmentation (that inevitably goes along with an increased number

of indicators) generally increases the ability of participants to give
accurate proportion estimates (albeit at the cost of increased

processing time).
6.2.1 | Eye movement analyses

For the sake of brevity, the eye movement analyses reported in this

section focused on selected major oculomotor processing differences

between pie charts and CCW‐tree maps (see Table 1 for a complete

set of means and statistical parameters, including effects of the num-

ber of indicators). Overall oculomotor effort was increased for the pro-

cessing of pie charts versus CCW‐tree maps, as indicated by an

increased number of fixations on the graph, prolonged saccade ampli-

tudes, and greater horizontal and vertical dispersion of fixations. Fur-

thermore, search in CCW‐tree maps was characterized by more

downward saccades and fewer left/right saccades compared to pie

charts. Additionally, mean fixation position was shifted further to the

right and to the upper part of the graph in CCW‐tree maps as com-

pared to pie charts. Together, these observations indicate different

scanning strategies for the two graph types. In sum, the greater oculo-

motor effort for pie charts further specifies our central assumption

that the underlying integration processes are more difficult for pie

charts than for CCW‐tree maps.
6.2.2 | Correlational analyses

Further variables were examined regarding their correlation with RTs.

However, we only found a significant correlation between the number

of fixations and RTs (r = .88 p < .001), which is to be expected given

that longer processing time on a graph inevitably increases the time

window for further fixations to occur (thus, we will not further report

this correlation in the following experiments). There was no significant

correlation between the position of the relevant indicator in the graph

(i.e., first, second, and third) and RTs (r = .11, p = .70) and no evidence

for a learning effect over the course of the experiment in terms of a

significant negative correlation between trial number and RTs

(r = −.17, p = .54). There was also no significant relationship between

RTs and accuracy within each graph type (pie charts: r = .18, p = .52;

CCW‐tree maps: r = −.02, p = .94).
7 | EXPERIMENT 2: COMPARISON
JUDGMENTS

The second experiment examined differences between CCW‐tree

maps and pie charts when making comparison judgments. Participants

were asked to verbally indicate the larger one of two given indicators.

Because, unlike in Experiment 1, comparison processes are explicitly

instructed in Experiment 2 (and not just an implicit feature of a part‐

whole comparison), we reasoned that this greater emphasis on com-

parison should yield a more pronounced advantage of CCW‐tree maps,

which were explicitly developed to facilitate comparison processes

(see Introduction). Many methodological details were similar to Exper-

iment 1 (i.e., regarding participants, stimuli, overall procedure, design,

and data analysis). Thus, the method section will only focus on differ-

ences to Experiment 1.



TABLE 1 Results of eye movement analyses in Experiment 1

Dependent variable Indicators
Pie charts:
Mean (SE)

Tree maps:
Mean (SE) F df p ηp2

Number of fixations (N) 5 14.8 (2.3) 13.0 (1.8) Graph type: 5.38 1, 14 .037 .293
7 15.1 (2.5 14.4 (2.5) Indicator: 7.71 2, 28 .006 .372
9 15.7 (2.3) 16.1 (2.5) Interaction: 4.07 2, 28 .044 .238

Mean fixation duration (ms) 5 325 (23) 330 (26) Graph type: 0.10 1, 14 .759 .007
7 329 (24) 329 (22) Indicator: 1.61 2, 28 .218 .103
9 317 (17) 316 (21) Interaction: 0.31 2, 28 .736 .022

Mean saccade amplitude (°) 5 2.74 (.10) 2.33 (.13) Graph type: 67.98 1, 14 <.001 .839
7 2.62 (.09) 2.21 (.10) Indicator: 5.57 2, 28 .010 .300
9 2.56 (.09) 2.29 (.11) Interaction: 2.35 2, 28 .122 .153

Horizontal fixation dispersion (SD of x coordinates per trial) 5 52.6 (2.1) 46.4 (2.0) Graph type: 97.83 1, 14 <.001 .883
7 53.1 (1.6) 43.2 (1.8) Indicator: 2.54 2, 28 .109 .163
9 55.5 (2.1) 47.8 (2.8) Interaction: 1.22 2, 28 .307 .086

Vertical fixation dispersion (SD of y coordinates per trial) 5 58.4 (4.0) 52.9 (6.0) Graph type: 12.41 1, 14 .004 .488
7 57.4 (3.5) 49.7 (5.0) Indicator: 2.80 2, 28 .083 .177
9 61.3 (3.9) 51.0 (4.3) Interaction: 1.41 2, 28 .263 .098

Mean horizontal (x) coordinate (px) 5 494 (13) 520 (15) Graph type: 44.88 1, 14 <.001 .775
7 494 (14) 508 (15) Indicator: 7.39 2, 28 .010 .362
9 489 (15) 524 (15) Interaction: 12.63 2, 28 .001 .493

Mean vertical (y) coordinate (px) 5 370 (16) 412 (16) Graph type: 82.94 1, 14 <.001 .864
7 384 (16) 422 (14) Indicator: 10.42 2, 28 .001 .445
9 383 (17) 410 (15) Interaction:4.28 2, 28 .034 .248

Leftward saccades (%) 5 25.4 (1.3) 21.0 (1.5) Graph type: 43.65 1, 14 <.001 .771
7 26.5 (1.7) 21.0 (1.5) Indicator: 1.05 2, 28 .365 .075
9 26.7 (1.6) 19.0 (1.5) Interaction: 2.01 2, 28 .165 .134

Rightward saccades (%) 5 26.4 (1.1) 23.6 (1.8) Graph type: 6.83 1, 14 .021 .345
7 26.1 (1.2) 23.2 (2.0) Indicator: 0.19 2, 28 .795 .014
9 26.2 (1.2) 23.2 (1.8) Interaction: 0.01 2, 28 .986 .001

Upward saccades (%) 5 24.9 (1.7) 25.0 (2.0) Graph type: 0.78 1, 14 .392 .057
7 24.4 (1.8) 25.5 (2.4) Indicator: 0.81 2, 28 .431 .059
9 24.9 (1.9) 26.7 (1.8) Interaction: 0.60 2, 28 .535 .044

Downward saccades (%) 5 23.3 (2.2) 30.4 (2.6) Graph type: 63.03 1, 14 <.001 .829
7 23.0 (2.1) 30.4 (2.3) Indicator: 0.03 2, 28 .955 .003
9 22.2 (2.2) 31.1 (2.6) Interaction: 0.71 2, 28 .706 .052

Note. p‐values based on two‐tailed tests, α = .05.
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7.1 | Method

7.1.1 | Stimuli and procedure

For Experiment 2, the stimuli from Experiment 1 were used again, but

two changes were introduced to avoid ceiling effects in performance:

First, the assignment of letter labels to shares was now randomized

(instead of being sorted alphabetically from largest to smallest share).

Second, the additional visual anchors (dashed lines) were removed

from all graphs. At the beginning of each trial, a question regarding

the comparison of two indicators was displayed. Specifically, partici-

pants were asked to indicate the larger one of two given segments

(e.g., “Which segment is larger, R or Z?”). The relevant indicators were

chosen in a way that an equal distribution of differences between two

indicators was achieved across all trials (i.e., there was an equal amount

of trials referring to differences smaller than 5%, 5–9%, 10–14%, etc.).

7.1.2 | Design and data analysis

The independent variables in this experiment were graph type (pie

chart vs. CCW‐tree maps), number of indicators per graph (5, 7 or 9),

and the size of the difference between the relevant two indicators as

an index of comparison difficulty (for statistical purposes, this variable

was dichotomized into differences <5% and ≥5 percentage points). The

dependent variables in this experiment were the mean accuracy (%)
and RTs; 2 × 3 × 2 repeated measure ANOVAs were computed unless

otherwise indicated.
7.2 | Results and discussion

Regarding response accuracy (error percentage), the ANOVA revealed

a significant main effect of graph type, F(1, 14) = 5.95, p < .05,

ηp
2 = .298, indicating an accuracy advantage for CCW‐tree maps (mean

error rate = 2.36%) over pie charts (mean error rate = 5.03%). There

was also a significant main effect of the size of the difference between

indicators, F(1, 14) = 9.42, p < .05, ηp
2 = .402, suggesting a decrease in

accuracy (i.e., increase in error rate) when comparisons involved small

differences and thus greater difficulty (from mean error rate = 1.80%

to 5.58%, see Figure 4). There was no significant main effect of the

number of indicators, F < 1. None of the two‐way (or three‐way) inter-

actions were statistically significant, all ps > .18. Nevertheless, visual

inspection of Figure 4 indicates that participants especially appear to

encounter problems in pie charts when small differences were

involved. To further investigate this issue, we went back to the raw

data in order to find specific examples of graph layouts that produced

strong accuracy differences between corresponding pie charts and

CCW‐tree maps. Figure 5 displays two pairs of such stimuli (Examples

2a and 2b; note that each pair was based on the same data set).
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Interestingly, even though the pie chart segments were generally

size ordered (in clockwise fashion), participants obviously did not use

(or learn) this regularity to come up with correspondingly accurate

comparison judgments. As expected during our design of the CCW‐

tree maps, it appears to be easier for participants to compare the

respective segment length in CCW‐tree maps than to compare the size

of the pie segments (or the length of the curved outer lines). The

present observations also suggest that size ordering of pie segments

does not automatically facilitate comparison judgments.

Regarding RTs, the ANOVA revealed a significant main effect of

graph type, F(1, 14) = 10.61, p < .01, ηp
2 = .431, indicating that

CCW‐tree maps were processed faster (M = 1873 ms) than pie charts

(M = 1990 ms; see Figure 4). There was also a significant main effect of

the number of indicators, F(2, 28) = 33.90, p < .001, ηp
2 = .708. Specif-

ically, an increase of the number of indicators also led to an increase in

RTs (M = 1,742, 1,835, and 2,216 ms). Finally, we observed a signifi-

cant effect of the size of the difference, F(1, 14) = 38.05, p < .001,

ηp
2 = .731, indicating prolonged RTs for the comparison of small (vs.

large) differences (2,064 vs. 1,799 ms). There was also a significant

interaction of graph type and the number of indicators,

F(2, 28) = 3.94, p < .05, ηp
2 = .220, reflecting the observation that

the CCW‐tree map advantage was especially pronounced in the seven

indicators condition (average advantage of 260 ms; see Figure 4). All

other interactions were not significant, all ps > .10, except for the

three‐way interaction, F(2, 28) = 7.03, p < .01, ηp
2 = .334. Taken

together, the RT results are nicely in line with the accuracy data and,

in line with our hypotheses, suggest a substantial CCW‐tree map ben-

efit over pie charts.
7.2.1 | Eye movement analyses

The eye movement analyses were carried out in the same way as in

Experiment 1 (seeTable 2). As in the previous experiment, overall ocu-

lomotor effort was increased for the processing of pie charts versus

CCW‐tree maps, as indicated by an increased number of fixations on

the graph, prolonged saccade amplitudes, and greater horizontal and

vertical dispersion of fixations. Note that both dispersion measures

were numerically higher than in Experiment 1, most likely because

the instructions in the present experiment explicitly focus on two spa-

tially separated indicators (instead of just one). Similar to Experiment 1,

we again found that CCW‐tree maps were scanned with fewer left-

ward saccades but more downward saccades. Additionally, we

observed more rightward saccades and fewer upward saccades for

CCW‐tree maps, which might hint at a more reading‐like scanning pat-

tern. In sum, these analyses again indicate greater oculomotor effort

associated with the more demanding comparison processes for pie

charts than for CCW‐tree maps.

Finally, we further analyzed the number of gaze transitions

between the relevant to‐be‐compared shares for the two stimulus var-

iants referred to above (see Figure 5, Examples 2a and 2b), which

yielded strong accuracy disadvantages for pie charts (note that only

participants who contributed uncompromised eye movement data in

the respective trials were considered). Although for the first stimulus

variant we found a similar number of gaze transitions between the

to‐be‐compared shares for both graph types (pie chart: 3.5, tree map:

3.4, t < 1), there were more gaze transitions for the pie chart (vs. the

tree map) in the second variant (3.4 vs. 2.1, t(11) = 2.11, p = .029 using

a one‐tailed test). This post hoc analysis suggests that at least in some

cases, difficult comparison processes (here: for pie charts) go along

with an increased number of gaze transitions between the relevant

shares in the graph.

7.2.2 | Correlational analyses

Further analyses revealed no significant correlation of RTs and number

of errors (r = .18, p = .52 in the CCW‐tree map condition and r = −.20,

p = .47 in the pie chart condition). Given the random assignment of

indicator letters to shares, we did not analyze the correlation of RT

and stimulus position (see Experiment 1, where this analysis was more

informative but revealed no significant effect). Instead, we here ana-

lyzed whether participants responded faster when the smaller indica-

tor was named first in the question, which was not the case (r = .07,

p = .80). As in Experiment 1, there was no evidence for decreasing

RTs over the course of the experiment (r = −.04, p = .89).
8 | EXPERIMENT 3: NATURAL LABELING

The third experiment compared CCW‐tree maps and pie charts in a

more realistic setting to assess the extent to which the CCW‐tree

map advantage still holds in more complex scenarios. Participants

solved the same task as in Experiment 2 (comparison judgments), but

instead of random letters, we utilized graphs involving meaningful

labels from various semantic fields for the indicators. Based on the

overall procedural similarity to Experiment 2, the method section will

selectively focus on the relevant differences.



FIGURE 5 Critical stimulus examples in Experiments 2 and 3 yielding a strong comparison accuracy disadvantage for pie charts (vs. tree maps). In
the upper two examples (a,b) from Experiment 2, participants mistakenly judged shares “X”/“O” as being larger than “C”/“F,” respectively. In the
examples from Experiment 3 (a,b), participants mistakenly judged shares related to “Grün”/“Zitrone” as being larger than “Blau”/“Amarena”
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8.1 | Method

8.1.1 | Stimuli

Participants were asked to indicate the larger one of two given seg-

ments (e.g., “Which one is more popular: green or blue?”; “Which one

is more popular: onion or broccoli?”). The indicators in each stimulus

were associated with meaningful labels (e.g., types of fruits, vegetables,

noodles, and bread). Unlike the previous experiments and more in line

with common usage, labels for pie charts were located outside of the

graph with a marker line connected to the respective share, whereas

we utilized direct labelling for CCW‐tree maps. Note that a direct

labeling of the pie chart segments (see Ratwani et al., 2008; Gillan

et al., 1998; Kosslyn, 1994, for benefits of direct labelling) seemed

unfeasible as it would have required rotated, hard to read labels. Exam-

ples of the stimuli are depicted in Figure 5.

8.1.2 | Procedure

Due to the complexity involved in designing the graphs (each graph

displayed a different semantic field), this experiment consisted of 24

trials only. Twelve of the 30 data sets from the previous experiments
were used (four with five indicators, four with seven indicators, and

four with nine indicators). There were two comparison tasks for each

data set (one as a CCW‐tree map, one as a pie chart).

8.1.3 | Design and data analysis

The independent variables in this experiment were graph type (pie

chart vs. CCW‐tree map) and the number of indicators per stimuli (five,

seven, or nine). Due to the small set of trials, we did not include the

size of the difference (which varied in a similar manner as in the previ-

ous experiment) as an additional independent variable in the design.

The dependent variables were the mean number of errors per trial

and RTs; 2 × 3 repeated measure ANOVAs were used for statistical

analyses unless otherwise indicated.
8.2 | Results and discussion

The accuracy analysis revealed a significant main effect of graph type,

F(1, 14) = 19.31, p < .001, ηp
2 = .580. In fact, not a single error was

committed in the CCW‐tree map condition, whereas on average

11.11% errors occurred during pie chart processing (see Figure 6).



TABLE 2 Results of eye movement analyses in Experiment 2

Dependent variable Indicators
Pie charts:
Mean (SE)

Tree maps:
Mean (SE) F df p ηp2

Number of fixations (N) 5 7.2 (0.3) 6.7 (0.3) Graph type: 26.83 1, 14 <.001 .674
7 8.2 (0.3) 7.0 (0.2) Indicator: 20.41 2, 28 <.001 .611
9 9.9 (0.7) 8.8 (0.3) Interaction: 0.66 2, 28 .460 .048

Mean fixation duration (ms) 5 279 (9.8) 280 (9.3) Graph type: 11.94 1, 14 .004 .479
7 274 (9.1) 293 (14.7) Indicator: 3.84 2, 28 .048 .228
9 263 (8.3) 279 (9.6) Interaction: 1.68 2, 28 .211 .115

Mean saccade amplitude (°) 5 4.12 (0.19) 3.46 (0.16) Graph type: 116.04 1, 14 <.001 .899
7 3.85 (0.18) 3.14 (0.13) Indicator: 31.78 2, 28 <.001 .710
9 3.74 (0.15) 3.03 (0.11) Interaction: 0.17 2, 28 .815 .013

Horizontal fixation dispersion (SD of x coordinates per trial) 5 60.0 (2.3) 53.8 (1.7) Graph type: 60.25 1, 14 <.001 .823
7 64.4 (2.1) 55.9 (1.9) Indicator: 14.99 2, 28 <.001 .535
9 67.4 (2.0) 55.8 (1.5) Interaction: 4.56 2, 28 .025 .260

Vertical fixation dispersion (SD of y coordinates per trial) 5 75.5 (4.2) 66.5 (3.6) Graph type: 62.24 1, 14 <.001 .827
7 75.2 (4.0) 57.4 (3.1) Indicator: 11.94 2, 28 <.001 .479
9 79.6 (3.6) 62.0 (2.7) Interaction: 15.80 2, 28 .001 .549

Mean horizontal (x) coordinate (px) 5 473 (18) 508 (17) Graph type: 202.12 1, 14 <.001 .940
7 469 (17) 503 (17) Indicator: 9.79 2, 28 .001 .429
9 466 (18) 509 (15) Interaction: 3.88 2, 28 .039 .230

Mean vertical (y) coordinate (px) 5 379 (15) 426 (18) Graph type: 204.96 1, 14 <.001 .940
7 394 (17) 429 (16) Indicator: 17.13 2, 28 <.001 .568
9 394 (17) 428 (17) Interaction:10.74 2, 28 .001 .452

Leftward saccades (%) 5 23.9 (1.5) 19.6 (1.2) Graph type: 20.10 1, 14 .001 .607
7 25.9 (1.5) 24.4 (1.4) Indicator: 11.41 2, 28 < .001 .467
9 27.0 (1.2) 21.4 (0.9) Interaction: 3.73 2, 28 .046 .223

Rightward saccades (%) 5 20.8 (1.2) 24.7 (1.1) Graph type: 43.60 1, 14 <.001 .770
7 22.7 (1.0) 27.7 (1.2) Indicator: 10.65 2, 28 .001 .450
9 21.6 (1.0) 24.3 (0.9) Interaction: 1.11 2, 28 .346 .078

Upward saccades (%) 5 31.8 (1.7) 24.3 (1.3) Graph type: 55.60 1, 14 <.001 .811
7 28.3 (1.4) 21.7 (1.3) Indicator: 8.09 2, 28 .002 .383
9 29.5 (1.2) 25.2 (1.3) Interaction: 3.29 2, 28 .054 .202

Downward saccades (%) 5 23.4 (1.0) 31.4 (1.2) Graph type: 48.44 1, 14 <.001 .788
7 23.2 (1.0) 26.3 (1.7) Indicator: 7.74 2, 28 .003 .373
9 22.0 (1.1) 29.1 (1.3) Interaction: 4.67 2, 28 .019 .264

Note. p‐values based on two‐tailed tests, α = .05.
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There was also a significant main effect of the number of indicators,

F(2, 28) = 8.38, p < .001, ηp
2 = .374: Similar to Experiment 2, errors

increased with increasing number of indicators. The interaction effect

was also significant, F(2, 28) = 8.38, p < .001, ηp
2 = .374, suggesting

that the effect of the number of indicators was only present for pie

charts (mean error rates = 1.67%, 16.67%, and 15.00% for five, seven,

and nine indicators, respectively).

As in Experiment 2, we further looked at those graphs that were

associated with substantial accuracy differences between both graph

types (Figure 5, Examples 3a and 3b). Again, the errors associated with

the pie charts occurred despite the fact that the indicators were size

ordered. The size difference between the indicators was below five

percentage points in these trials, which seems to be a prerequisite

for the occurrence of these specific errors.

Because this particular phenomenonwas not explicitly investigated

in previous research, we can only speculate about potential causes of

these mistakes. Probably, the position of the pie chart segments in rela-

tion to visual anchors may play a role here. For example, Gillian and

Callahan (2000) suggested that in pie graphs, performance is strongly

related to the difference between the size of the target segment and

the closest‐sized anchor. In line with this observation, we found that

thewrongly chosen indicatorswere typically located at anchor positions

(even though these anchors were not visibly depicted) and extended
towards both directions of the anchor. Probably, this configuration

elicits the illusion of larger segment size. Note, however, that this expla-

nation does not readily hold for all examples (e.g., see Experiment 2).

Another observation is that throughout all salient trials, the wrongly

judged indicator was located at the bottom left of the pie chart, which

may hint towards position‐dependent attention deployment that may

lead to wrong judgments. Taken together, further research is clearly

needed to follow up on the mechanisms of these performance deficits

(but see the final part of eye movement analyses below).

Regarding RTs, the ANOVA only revealed a significant main effect

of the number of indicators, F(2, 28) = 31.70, p < .001, ηp
2 = .694

(M = 2,052, 2,387, and 3,269 ms for five, seven, and nine indicators,

respectively), but not of graph type, F(1, 14) = 2.38, p = .15. There

was no significant two‐way interaction, F(2, 28) = 1.37, p = .27 (see

Figure 6). Altogether, the RT data in Experiment 3 do not compromise

the interpretation of the accuracy data. Thus, the more realistic setting

in Experiment 3 generally confirmed a performance advantage for

CCW‐tree maps over pie charts.
8.2.1 | Eye movement analyses

The eye movement analyses were carried out in the same way as in the

previous experiments (see Table 3). Again, we observed increased



0

5

10

15

20

25

5 7 9

E
rr

or
s 

(%
)

Number of Indicators

Pie Chart

Tree Map

0

500

1000

1500

2000

2500

3000

3500

4000

5 7 9

)s
m(

e
mi

T
noi tcae

R
nae

M

Number of Indicators

Pie Chart

Tree Map

FIGURE 6 Accuracy and response time results in Experiment 3 as a

function of graph type and number of indicators. Error bars represent
standard errors

HUESTEGGE AND POETZSCH 11
overall oculomotor effort for the processing of pie charts versus CCW‐

tree maps, as indicated by an increased number of fixations on the

graph, substantially prolonged saccade amplitudes, and much greater

horizontal and vertical dispersion of fixations. The substantial effects

on saccade amplitudes and fixation dispersion are clearly attributable

to the fact that the pie charts were labeled outside the segment area,

which empirically supports the assumption that this suboptimal

labeling method cannot be compensated for by drawing on, for

example, parafoveal processing abilities. As in Experiments 1 and 2,

we again found that CCW‐tree maps were scanned with fewer

leftward saccades but more downward saccades. In sum, the eye

movement analyses in this experiment support the assumption of an

additional disadvantage of pie charts (vs. tree maps) with respect to

labeling under more realistic conditions. In line with the reported

processing difficulties associated with shares at the bottom left of

pie charts, we found that mean fixation positions were shifted

accordingly more to the bottom and to the left (compared to CCW‐

tree maps, see Table 3).

Finally, we further analyzed the number of gaze transitions

between the relevant to‐be‐compared shares for the two stimulus

variants referred to above that yielded strong accuracy disadvantages

for pie charts vs. tree maps (see Figure 5, Examples 3a and 3b).

Although, for the first example, we did not find a significant difference

in the mean number of gaze transitions between the pie chart (2.1) and

the tree map (1.5), t < 1, there were significantly more gaze transitions

for the pie chart (1.85) versus the tree map (0.93) in the second

example, t(12) = 2.41, p = .016 (one‐tailed test). Again, this post hoc

analysis suggests that, at least in some cases, difficult comparison
processes (here: for pie charts) go along with an increased number of

gaze transitions between the relevant shares in the graph.

8.2.2 | Correlational analyses

As in the previous experiments, we computed the correlation between

RT and accuracy, but only for pie charts (because there was no variance

in the error data for tree maps). As a result, and in line with the

observations in the previous experiments, there was no significant

correlation of RTs and accuracy for the pie charts (r = −.05, p = .86).

Further analyses (e.g., learning effects) were not considered meaningful

due to the low number of trials in this experiment.
9 | EXPERIMENT 4: UNEVEN DATA SETS

This final experiment was designed to address a few remaining issues.

First, we asked whether the superiority of CCW‐tree maps over pie

charts is still present when using data sets that cannot be split into

two sets of 50%, thus with figures that can no longer be designed as

perfect rectangles. Second, another alternative to pie charts would be

the implementation of a single stacked bar graph. This design option

would be similar to CCW‐tree maps (the latter consisting of two

columns) except for the constraint that all bar segments are stacked

within one column. If the presence of a one‐dimensionally defined

feature (straight line length in constant orientation) as a code of the

relevant information is the main reason for the superiority of CCW‐tree

maps over pie charts (see our reasoning in the introduction), stacked bar

graphs should also result in better performance than pie charts. To

answer these issues, we set up a final (noneye tracking) experiment.
9.1 | Method

9.1.1 | Participants

Twenty participants (16 female, 19 right‐handed, mean age = 27;

11 years, SD = 8.6) took part in the experiment. Most of them were

students enrolled in Psychology. All participants were fluent German

speakers.

9.1.2 | Stimuli, procedure, and design

The previous experiments showed that the disadvantage of pie charts

is especially pronounced when the difference in segment size is small.

Thus, in this experiment—which in general was comparable to the pre-

vious experiments—we only implemented the small difference condi-

tion. Stimuli were designed based on 20 data sets. Each data set was

combined with three different comparison tasks, which always related

to small differences in segment size (<5%). The resulting 60 combina-

tions were displayed as CCW‐tree maps, stacked bar graphs, and pie

charts, respectively (white on black background, see Figure 7a–c).

The overall size of the graph types and the number of shares (seven)

were held constant. Segments were randomly ordered, that is, their

position was not ordered with respect to segment size. Together, there

were 180 trials (equivalent to a duration of 30 min for the entire exper-

iment). The experiment was programmed using the software

PsychoPy. The only independent variable was graph type (CCW‐tree

map, stacked bar, and pie). Independent variables included RTs and



TABLE 3 Results of eye movement analyses in Experiment 3

Dependent variable Indicators
Pie charts:
Mean (SE)

Tree maps:
Mean (SE) F df p ηp2

Number of fixations (N) 5 10.3 (0.4) 8.0 (0.4) Graph type: 12.27 1, 14 .004 .467
7 11.6 (0.4) 10.0 (0.6) Indicator: 35.90 2, 28 <.001 .719
9 14.5 (0.7) 13.1 (1.0) Interaction: 0.29 2, 28 .682 .020

Mean fixation duration (ms) 5 219 (6.9) 238 (7.0) Graph type: 28.40 1, 14 <.001 .670
7 220 (4.6) 254 (8.5) Indicator: 2.88 2, 28 .078 .171
9 217 (6.3) 229 (5.7) Interaction: 2.17 2, 28 .134 .134

Mean saccade amplitude (°) 5 5.94 (0.22) 3.77 (0.14) Graph type: 435.79 1, 14 <.001 .969
7 5.86 (0.23) 3.55 (0.17) Indicator: 22.90 2, 28 <.001 .621
9 5.10 (0.16) 3.26 (0.12) Interaction: 2.46 2, 28 .109 .150

Horizontal fixation dispersion (SD of x coordinates per trial) 5 144 (4.2) 67 (2.1) Graph type: 885.87 1, 14 <.001 .984
7 143 (4.2) 66 (1.7) Indicator: 0.10 2, 28 .896 .007
9 140 (3.8) 71 (2.0) Interaction: 1.88 2, 28 .174 .119

Vertical fixation dispersion (SD of y coordinates per trial) 5 102 (4.5) 77 (3.6) Graph type: 190.01 1, 14 <.001 .931
7 121 (5.1) 69 (3.1) Indicator: 7.46 2, 28 .003 .348
9 110 (4.4) 77 (3.1) Interaction: 44.99 2, 28 <.001 .763

Mean horizontal (x) coordinate (px) 5 446 (4.6) 515 (5.3) Graph type: 59.88 1, 14 <.001 .810
7 502 (9.1) 513 (4.8) Indicator: 7.36 2, 28 .008 .344
9 485 (9.1) 508 (7.3) Interaction: 26.93 2, 28 <.001 .658

Mean vertical (y) coordinate (px) 5 358 (5.6) 381 (6.3) Graph type: 167.82 1, 14 <.001 .923
7 383 (5.7) 408 (6.3) Indicator: 21.03 2, 28 <.001 .600
9 393 (9.4) 419 (10.3) Interaction:0.18 2, 28 .814 .013

Leftward saccades (%) 5 31.5 (2.1) 21.6 (2.0) Graph type: 13.97 1, 14 .002 .499
7 31.3 (1.4) 26.9 (1.8) Indicator: 4.15 2, 28 .036 .229
9 28.5 (1.5) 22.1 (1.9) Interaction: 1.60 2, 28 .226 .103

Rightward saccades (%) 5 28.6 (1.5) 24.3 (1.8) Graph type: 2.79 1, 14 .117 .166
7 28.9 (1.3) 27.3 (2.2) Indicator: 4.76 2, 28 .020 .254
9 23.9 (1.0) 23.9 (0.9) Interaction: 1.61 2, 28 .219 .103

Upward saccades (%) 5 20.9 (1.4) 25.9 (2.3) Graph type: 0.05 1, 14 .834 .003
7 21.1 (1.4) 17.9 (2.2) Indicator: 4.51 2, 28 .026 .244
9 24.3 (1.7) 23.5 (1.8) Interaction: 5.52 2, 28 .012 .283

Downward saccades (%) 5 19.1 (1.1) 28.2 (1.7) Graph type: 37.62 1, 14 <.001 .729
7 18.6 (0.9) 27.9 (2.0) Indicator: 3.93 2, 28 .051 .219
9 23.4 (1.1) 30.4 (2.2) Interaction: 0.46 2, 28 .597 .032

Note. p‐values based on two‐tailed tests, α = .05.
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error rates. Additionally, we assessed which graph type participants

subjectively preferred after the experiment.
9.2 | Results and discussion

The subjective preference rating resulted in 45% preference votes for

pie charts, 40% for CCW‐tree maps, whereas only 15% preferred the

stacked bar variant. This preference distribution was statistically non-

random (p = .002 based on a Chi square test), suggesting that stacked

bar graphs were clearly less preferred than the other options. An

ANOVA for RTs revealed no significant effect, F(2, 38) = 1.852,

p = .171 (M = 2871 ms, SE = 145 for CCW‐tree maps, M = 3006 ms,

SE = 110 for stacked bar graphs, M = 2949 ms, SE = 122 for pie charts,

respectively). However, there was a significant effect on error rates,

F(2,38) = 4.890, p = .02, ηp
2 = .205. Mean error rates amounted to

18.5% (SE = 1.11) for CCW‐tree maps, 19.2% (SE = 1.12) for stacked

bar graphs, and 21.9% (SE = 1.22) for pie charts. Post hoc

(nondirectional) pairwise comparison tests revealed that performance

for pie charts was significantly worse than for CCW‐tree maps

(p = .029) and stacked bar graphs (p = .003), whereas there was no

significant difference between CCW‐tree maps and stacked bar graphs

(p = .57). Taken together, the error data corroborated the main

finding from the previous experiments, namely, better performance
for CCW‐tree maps than for pie charts. Notably, stacked bar graphs

did not perform significantly worse than CCW‐tree maps, probably

due to the fact that performance in both types of representation rely

on the same one‐dimensional (straight line length in constant spatial ori-

entation) comparison operations. Interestingly, a comparison with the

data pattern in Experiment 2 suggests overall longer RTs, higher error

rates, and a smaller error rate difference between pie charts and

CCW‐tree maps. Probably, the decision to focus only on very small

depicted share size differences and the need to switch between three

different graph types has substantially increased overall task difficulty

in Experiment 4 (compared with Experiment 2).
10 | GENERAL DISCUSSION

This study experimentally addressed the mechanisms underlying inte-

gration processes during the comprehension of frequency graphs.

Based on theoretical considerations, we developed a constrained vari-

ant of the increasingly popular tree map as a potential alternative to

the ubiquitous pie charts for the display of (relative) frequency data.

We hypothesized that these tree maps avoid some well‐known major

drawbacks associated with pie charts (i.e., especially those that hamper

integration processes during graph processing) while maintaining or



FIGURE 7 Stimuli for uneven data sets used in Experiment 4 (pie chart: a; stacked bar graph; b, constant column width tree map: c) and an
alternative design solution (not implemented in the present experiment) maintaining a rectangular shape (d)
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even improving (via the enhanced possibility of direct labelling) their

overall space effectiveness. Previous research regarding the usefulness

of pie charts has produced rather mixed results, and researchers that

highlighted the shortcomings of pie charts usually recommended the

use of bar graphs instead (e.g., Cleveland & McGill, 1984).

However, some studies suggested that bar graphs may not always

be superior to pie charts (e.g., Hollands & Spence, 2001; Spence &

Lewandowsky, 1991), whichmight be one of the reasonswhy pie charts

are still very popular. Crucially, our newly developed tree map variant

was empirically evaluated to test the extent to which the associated

facilitation of integration processes actually translates into measurable

performance benefits under different (prototypical) task demands.

Thus, our theory‐driven optimization of graph design should have

advantageous effects on performance that should ideally outweigh a

remaining important advantage of pie charts, namely, the overall famil-

iarity of graph readerswith the pie chart format (e.g., Pinker, 1990; Shah

& Carpenter, 1995, for a discussion of effects of previous experience

with graphs on performance).

To address these issues, we compared pie charts and tree maps in a

set of four experiments. Participants' performance was evaluated in

tasks involving proportion (Experiment 1) and comparison

(Experiments 2, 3, and 4) judgments under both highly controlled

(Experiments 1, 2, and 4) and more realistic (Experiment 3)

circumstances. Additionally, we measured participants' eye movements

(except for Experiment 4) to achieve first insight into oculomotor

control underlying frequency graph comprehension in general and

performance differences between both graph types in particular.
Overall, the results showed no clear performance differences

between tree maps versus pie charts for proportion judgments. This

result was probably to be expected because proportion judgments

should be less influenced by integration processes than task demands

that explicitly refer to specific comparisons between selected indicators.

The latter was at stake in Experiments 2, 3, and 4, where we observed

substantial performance benefits for CCW‐tree maps over pie charts

in line with our expectations. Additional analyses of eye movements

confirmed that the performance advantage of the rectangular design

went hand in handwith decreasedoculomotor effort in terms of number

of fixations, saccade amplitudes, and spatial fixation dispersion.

Furthermore, our post hoc analysis of selected items involving the

comparison of small differences revealed a tendency towards fewer

gaze transitions between the two to‐be‐compared shares for CCW‐tree

maps than for pie charts. The analysis of saccade directions revealed

further consistent differences between the scanning of the two graph

types: CCW‐tree maps were scanned in a more reading‐like pattern,

involving fewer leftward and more downward saccades compared to

pie charts.

Overall, the results additionally suggest that the CCW‐tree map

advantage especially comes into play for graphs containing a larger

number of indicators, because most of the CCW‐tree map benefits in

Experiments 2 and 3 were smallest in the condition with the smallest

set of indicators. Furthermore, the post hoc analyses of those graphs

that resulted in pronounced error rates in Experiments 2 and 3

suggested that comparison judgments especially suffer for pie charts

when the difference in pie segment size is very small.
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It is interesting that the effect of graph complexity (number of

indicators) on accuracy tended to point into opposite directions for

proportion judgments (Experiment 1) and comparison judgments

(Experiments 2 and 3): Although proportion judgments appeared to

be facilitated with an increasing number of indicators, comparison

judgments rather suffered. Probably, the extra time needed to find

two relevant indicators (vs. just one) for comparison judgments

explains the performance decrement when more indicators are pres-

ent, whereas proportion judgments might generally benefit from the

presence of a more graphically structured graph layout that comes

along with the presence of more indicators, which may serve as addi-

tional visual anchors for proportion judgments.

Our observation that the processing advantage for graphs with

lower demands on integration processes (i.e., CCW‐tree maps) is

especially pronounced for complex graphs (i.e., those involving many

indicators) nicely fits with previous research by Ratwani et al. (2008),

who postulated that integration can be subdivided into visual

integration (using perceptual features to build visual clusters) and

cognitive integration (higher‐level comparison of clusters). Crucially,

they argued that integration processes were more demanding as visual

graph complexity increased.

The purpose of use usually determines which display layout

represents the most compatible choice (Sparrow, 1989; Vessey, 1991,

1994;Washburne, 1927;Wickens & Andre, 1990;Wickens & Carswell,

1995). Tables are used for communicating exact data (Meyer, 2000), line

graphs for trends (Bryant & Tversky, 1999), and bar graphs for identify-

ingmaxima (Meyer, Shinar, & Leiser, 1997) or simple contrasts (Bryant &

Tversky, 1999). Based on our results, we can conclude that CCW‐tree

maps are particularly effective for the judgment of small differences

and especially in more complex graphs involving many indicators.
10.1 | Pie charts: Pros and cons

Disadvantages of pie charts include the difficulty to compare surface

areas (or the length of the curved circle segment) of pie slices

(see Carswell, 1992; Cleveland & McGill, 1984; Kosslyn, 1994), which

are unusually complex geometrical figures involving both curved and

straight lines. Second, it has been argued that pie slice comparisons

may involve mental rotation. Finally, pie charts come with a disadvan-

tage regarding the extraction of the referents related to the slices due

to font alignment issues. Specifically, it appears difficult to implement

an easy‐to‐read, upright direct labeling of slices, which is why pie slices

are often labeled outside the actual pie region. Experiment 3 revealed

that the latter option comes at the cost of increased oculomotor effort

in terms of a substantial increase of both horizontal and vertical fixa-

tion dispersion, suggesting that placing labels outside of the pie slices

cannot be compensated for by means of parafoveal processing.

These drawbacks of pie charts are countered by some advantages.

These include anchoring benefits (e.g., Chandrasekaran & Lele, 2010;

Simkin & Hastie, 1987; Spence & Lewandowsky, 1991), which, how-

ever, can also be provided in tree maps (see Experiment 1). Second,

pie charts are known to provide benefits for proportion judgments at

least when compared to nonstacked bar graphs under some conditions

(Hollands & Spence, 2001). However, our present results did not sug-

gest an advantage of pie charts over tree maps, probably due to the
fact that the organization of tree map data is similar to pie charts in

that all elements are displayed as part of a whole, simple geometric

figure (here: a rectangle).

A third advantage of pie charts refers to the possibility of size

ordering (e.g., clockwise), a feature that is not in the same way possible

with tree maps. Therefore, information about the relative position of a

pie segment can principally be used as a cue for comparison judgments.

However, it is interesting to note that despite the fact that our pie

chart stimuli were size ordered, participants obviously did not use this

cue to avoid errors in the comparison tasks (Experiments 2 and 3).

Thus, the potential advantage of size ordering in pie charts did not

transfer to corresponding performance benefits in our study, where

no explicit instructions regarding size ordering were given.

A final advantage of pie charts refers to their greater familiarity,

that is, the fact that participants have more experience with pie charts

than with other forms of frequency graphs. Expectations with respect

to graph layout are known to affect performance. Specifically, the

availability of fitting schemes to read graphs (Carpenter & Shah, 1998;

Pinker, 1990) should have provided some advantage for the more

frequent type of graph in our study, namely, the pie charts. Thus, it is

especially interesting to notice that the CCW‐tree maps nevertheless

were generally associated with better performance in our study.
10.2 | Comparison to previous studies

Although some research suggested that bar graphs are superior to pie

charts (Cleveland & McGill, 1984; Eells, 1926), other studies reported

advantages for pie charts, for example, when combinations of indicators

are compared (Spence & Lewandowsky, 1991), or for relative propor-

tion judgments (Hollands & Spence, 2001). Further research suggested

that proportion judgments were as accurate for pie charts as for bar

graphs (Simkin & Hastie, 1987). Our own results suggest that some of

the potential benefits of pie charts can largely be retained while

avoiding many of the disadvantages, namely, by using CCW‐tree maps.
10.3 | Mechanisms of integration processes during
the comprehension of pie charts and tree maps

In the following, we will further focus on the mechanisms underlying

integration processes especially in the comparison tasks in

Experiments 2 and 3, where the data suggested strong evidence for

more difficult integration processes for pie charts than for CCW‐tree

maps. According to Ratwani et al. (2008), visual integration processes

are based on similarity regarding perceptual (form, color), semantic

(e.g., semantically related areas), or spatial (e.g., proximity) features

(see also Liu & Wickens, 1992). In pie charts, similarity is established

via the overall similarity of the pie segments, whereas in the CCW‐tree

maps, it refers to the rectangular shapes and their spatial features.

When these visual clusters are related to the referents, further

integration is assumed to occur via a comparison–contrast mechanism,

which focuses on relevant differences between clusters. A similar

mechanism is proposed by Carpenter and Shah (1998), who postulated

an interpretation phase of graph comprehension during which

arithmetic operations on encoded values and the comparison of spatial

relations of indicators are assumed to take place (see also Gillian &
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Lewis, 1994). Crucially, they assume that viewers are more likely to

focus on the relationship of those data, which are perceptually

grouped (e.g., by proximity or by being connected with a line). This

grouping appears to be processed in a more efficient manner in

CCW‐tree maps than in pie charts.

One crucial advantage of our present CCW‐tree maps is that they

utilize only one dimension (height) to represent relevant information,

whereas the other (width) is held constant (similar to bar width in typical

bar graphs, see, e.g., Cleveland & McGill, 1984; Simkin & Hastie, 1987;

Spence, 1990; Friel et al., 2001). This design feature might thus repre-

sent a very important advantage when compared to the original tree

maps developed by Shneiderman (1992), where rectangle width was

variable and thus two spatial dimensions needed to be taken into

account for comparison purposes. Our main assumption that one‐

dimensional coding of the relevant information (straight line length of

constant spatial orientation) is the main reason for the CCW‐tree map

advantage is further corroborated by Experiment 4, where a type of

stacked bar graph (associated with the same benefits) also performed

better than pie charts, although at the cost of low subjective preference.

Although Simkin and Hastie (1987) actually reported very low graph

reading performance for stacked bar graphs, it is important to note that

they used multiple (instead of single) stacked bar graphs, where it is dif-

ficult to compare shares across several bars. This difference likely

accounts for the divergent observations regarding performance.
10.4 | Limitations and further research

Task performance involving graphs is largely dependent on the reader's

mathematical ability (Friel et al., 2001). In this study, we tested an

academic sample (mainly psychology students), which is certainly not

representative for a general audience of graph readers (e.g., in school

or readers of magazines). Thus, further research is needed to assess

the impact of previous knowledge and expertise on the present effects.

One potential limitation of the first three experiments of the cur-

rent study refers to the fact that we used data sets that could be

subdivided into two 50% shares in order to achieve an overall rectan-

gular design. As suggested in Experiment 4, it might be necessary to

design tree maps (of equal column length) that deviate from a perfect

rectangle in that one column might be slightly longer than the other.

Although this may be considered a drawback on aesthetic grounds,

the data from Experiment 4 showed that this layout did not counteract

the overall readability of the tree maps (which obviously benefit from

using constant column width). If the main aesthetic goal for designing

a CCW‐tree map still is to come up with a perfectly rectangular shape,

it could also be possible to include one share (e.g., at the bottom of the

graph) that extends across both columns (resulting in a hexagon, see

Figure 7D). However, this option would likely make it difficult to com-

pare the size of this specific share to other shares in the graph.

Another limitation is related to the manipulation of the number of

indicators. The chosen three values (5, 7, and 9) certainly do not allow

us to generalize our results to graphs with either a smaller or larger set

of indicators. However, our data clearly suggest that this variable plays

an important role for performance, and thus, it appears rewarding to

study this variable more extensively in the future.
Finally, one might ask why one should not recommend the of use

simple (nonstacked) bar graphs instead of CCW‐tree maps. Normal bar

graphs should have an advantage over both pie charts and CCW‐tree

maps specifically for comparison processes, because readers can utilize

a common scale during comparison (e.g., the y‐axis when bars are

aligned along the horizontal x‐axis; e.g., Cleveland & McGill, 1985).

However, such an alignment may potentially have unknown side

effects in the context of other graph reading tasks (e.g., proportion

judgments), but further research is certainly necessary to address these

open issues empirically.
10.5 | Summary and outlook

In this study, we addressed cognitive processes underlying graph

comprehension along with the aim to optimize the display of

frequency data in a theory‐driven manner. By this means, our study

continues a research tradition in which graph design is evaluated

empirically (e.g., Carpenter & Shah, 1998; Carswell et al., 1991;

Fischer, 2000; Huestegge & Philipp, 2011; Körner et al., 2014; Peebles

& Cheng, 2003; Ratwani et al., 2008; Shah & Carpenter, 1995;

Siegrist, 1996; Spence, 1990; Zacks et al., 1998), which is a necessary

precondition to understanding the underlying mechanisms of specific

graph advantages in particular and graph comprehension in general.

In this context, it was especially informative to study eye movement

control during frequency graph comprehension, which turned out to

be a viable and sensitive tool to understand the attentional

mechanisms underlying differences in overall performance (in terms

of RTs and accuracy).

This study is not the first one which proposed an alternative for

pie charts (e.g., see Cleveland & McGill, 1984; Spence &

Lewandowsky, 1991; Gillian & Callahan, 2000). However, none of

the alternatively proposed visualization methods were widely

accepted, and eventually, pie charts remained as the most common

method for displaying shares and percentages, probably due to their

space effectiveness and availability in typical graph software. A

reasonable strategy to promote the use of better visualization methods

therefore seems to be the development of software plug‐ins. The

general algorithm framework for the generation of CCW‐tree maps is

thus provided in the appendix.

Although the findings of this study do not provide unanimous

evidence for the superiority of the CCW‐tree maps under all conditions

and task demands, the use of CCW‐tree maps generally appears to be a

reasonable option to improve graph comprehension in many contexts

by building on an already well‐established layout option (tree maps). It

should also be noted that even small performance differences found

under controlled lab situations might well scale up in the real world,

where cognitive resources are usually restricted due to multiple task

demands. Thus, even small effects found in the lab may have a strong

impact in the real world (where one single error regarding graph reading

may have serious consequences in some critical situations). However,

this conjecture certainly demands explicit empirical testing in the future.

In sum, graph designers should be encouraged to more frequently

use CCW‐tree maps for displaying percentages and shares instead of

pie charts.
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APPENDIX A.

General algorithm for the generation of CCW‐tree
maps

Any programming language may be used for implementation, but it

may be beneficial to use a combination of HTML5 and JavaScript as

this provides the possibility to use canvas technology (e.g., d3.js,

chart.js, Google Chart Tools, Plotly, and other chart engines are based

on canvas technology). The specifics of the visual style may be config-

ured within the script. Runtime optimization for this general algorithm

may be researched.

1. Input data are collected from the input mask into an array [a1].

2. Input data are sorted from largest to smallest and saved into

another array [a2].

3. The number of necessary indicators is counted and saved into a

variable [v1].

4. The variable [v2] is generated to save the current progress and set

to 0.

5. A two‐column grid is generated.

6. Variables [v3] and [v4] are generated to save the cumulated

shares in the two columns.

7. A while‐loop is implemented checking if [v2] < [v1] and drawing

the graph.
a. Value [v2] is drawn from [a2] and locally stored as [v5].

b. If [v5] ≤ 0.5 and [v3] + [v5] ≤ 0.5, then the area of the indicator

is calculated and visually added to the first column and

v[3] = [v3] + [v5].

c. Else if [v5] ≤ 0.5 and [v4] + [v5] ≤ 0.5, then the area of the

indicator is calculated and visually added to the second col-

umn and v[4] = [v4] + [v5].

d. Else, [v5] − [v3] is locally stored as [v6] and visually added to

the first column. [v3] is set to 0.5. [v5] − [v6] is locally stored

as [v7] and visually added to the second column.

e. Labeling may be added.

f. [v2] = [v2] + 1.
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