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Summary: We investigated the effect of rest breaks on mental-arithmetic performance, examining performance as a function of the
factor rest, time-on-task, and demand. We asked the following questions: (i) Does rest (vs a continuous-work condition) improve
cognitive performance? (ii) Is active rest (taking a walk) better than passive rest (watching a video)? (iii) Do compensatory effects
of rest increase with time-at-work? (iv) Are there differential effects of rest on automatic and controlled processes? (v) Are there
differential effects of rest on performance speed versus variability? The results indicate that while rest is generally beneficial
for performance, these benefits are similar for active and passive rest. The benefits increase with time-on-task and are larger
for high (vs low) demand. Further, the effects on average response speed originated only partially from a reduction in the
probability of attentional failure, as indicated by reaction-time (ex-Gaussian model) distributional and delta-plot analysis.
Copyright © 2016 John Wiley & Sons, Ltd.

It is a truism that rest improves cognitive efficiency. In fact,
no one today would dispute the idea that cognitive efficiency
at school or at work is subject to variations which might be
overcome by taking a rest in order to restore attentional
resources or simply to get some distance from currently
performed activities. However, as soon as one goes into the
details of how exactly rest affects cognition, such former
consent rapidly diminishes and might even reverse into
severe disagreement. For example, one could claim that
taking a walk around the street is more restful than to take
a rest in stillness, but conversely, one could also claim the
opposite. Kahneman (2013, p. 39) positions himself as
someone who prefers active over passive rest, by stating:
‘…I have found a speed, about 17minutes for a mile, which
I experience as a stroll. I certainly exert physical effort and
burn more calories at that speed than if I sat in a recliner,
but I experience no strain, no conflict, and no need to push
myself. I am also able to think and work while walking at
that rate. Indeed, I suspect that the mild physical arousal
of the walk may spill over into greater mental alertness…’.
Here, we examined the effect of rest on performance in
self-paced mental arithmetic.

HISTORICAL BACKGROUND: EFFECTS OF REST
ON MENTAL EFFICIENCY

Since the end of the 19th century, researchers began to assess
the efficiency of human performance by means of chrono-
metric [reaction time (RT)-based] methods to infer to the
duration or fluctuations of cognitive operations. While some re-
searchers were particularly interested in the speed of mental
processes, considering fluctuations as measurement artifact
(Peak & Boring, 1926), others were precisely interested in this
latter aspect, theorizing on the causes and underlying mecha-
nisms of performance fluctuations (Robinson & Bills, 1926).

The observed intraindividual variations in RT performance
were attributed to an accumulation of refractory-phase effects
originating from the permanent overuse of mental operations,
and thus indicating the need for recuperation (Dodge, 1917;
Poffenberger, 1928; Robinson & Bills, 1926; Weaver,
1942). One of the great pioneers at this time, Kraepelin
(1902), developed the famous work curve, requiring
individuals to engage in continuous mental addition for a
prolonged time period. He suggested two primary sources
of performance fluctuations: accumulation of short-term
fatigue (refractoriness) and effort (motivational) variations
and further observed that taking short rest breaks counteract
these effects.

Since the classic work of Bills (1931, 1935), the occa-
sional appearance of extra-long reaction times (mental
blocks) during self-paced decisions has been considered
one of the most sensitive criteria of short-term fatigue. Bills
(1931, 1935) did not analyze the entire RT distribution but
defined mental blocks operationally as responses longer
than twice the individual mean within a series of trials.
He considered it almost certain that mental blocks act as
enforced micro rest that is inherent in the cognitive system
to prevent a more severe decrement from occurring. Bills
(1931, p. 244) stated that ‘…the rest afforded by these
blocks keep the individual’s objective efficiency up to an
average level…’. Bertelson and Joffe (1963) administered
their participants with a self-paced four-choice task that
lasted for about 30min, requiring them to press one of four
keys mapped onto one of four digits (1–4). Their result
also indicates that mental blocks enforce rest to ensure
efficient performance afterward. While blocks were pre-
ceded by a slowing of response and a decline in accuracy,
they were followed by a sudden improvement in both
measures (cf. Bertelson & Joffe, 1963, Figure 4). Thus,
one might reason whether explicitly administered rest
reduces block frequency.

Sanders and Hoogenboom (1970) administered their
participants with a six-choice RT task (response-stimulus
interval = 60ms), either a continuous work or a rest-break
condition. The digits 1–6 served as targets and were mapped
onto six separate keys. Responses became faster on average
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in the rest-break condition, while they remained the same in
the continuous-work condition. Moreover, a cumulative dis-
tributive function (CDF) analysis revealed that both condi-
tions did not differ with respect to the fastest but only the
slowest CDF percentiles. Sanders and Hoogenboom (1970)
interpreted their results, such that rest breaks proactively
prevent mental blocks from occurring, and by this means,
reduce response-speed variability. This interpretation is in
agreement with earlier proposals. For example, Jersild
(1926, p. 34) observed that his participants committed occa-
sional attentional failure in speeded color naming which he
termed as ‘…thwarted mental activity…’, indicating that
the (verbal) response-selection process ‘…seems to lag
behind the immediate perceptual process…’. Taken together,
today’s researchers are endowed with an abundance of find-
ings, although the diversity of terms and language use and
the lack of theoretical formalism in earlier studies make it dif-
ficult to directly derive clear predictions from this literature.

THEORETICAL BACKGROUND: SPARE–UTILIZED
CAPACITY MODEL

The present research deals first of all with the effects of brief
rest on performance in active sustained-attention tasks,
sometimes termed self-paced speeded tests (Pieters, 1985;
Van Breukelen et al., 1995). In these tests, individuals have
to attain and to maintain response activation and mental
focus over a (more or less) prolonged period of time
(Steinborn, Flehmig, Westhoff, & Langner, 2008; Steinborn
et al., 2010). According to Langner and Eickhoff (2013), it
is important to distinguish between active and passive
sustained-attention tasks (i.e., self-paced tasks vs vigilance
tasks) in order to avoid confusion when theorizing about the
underlying cognitive mechanisms. This might particularly
be important with respect to overall performance, with re-
spect to the ubiquitous performance decrement, as well as
with respect to its compensation by rest breaks (Ariga &
Lieras, 2011; Helton & Russell, 2015). To approach this
question, let us take the simplest example of a self-paced
mental-arithmetic task where individuals have to verify
whether a presented addition term (e.g., 2 + 3=5) is correct
or incorrect. According to Kahneman (1973), the processes
involved in active mental operations such as addition and
subtraction can be regarded as mobilization and permanent
deployment of mental effort to task operations.

The crucial assumption of a spare–utilized capacity model
is that there is a global limit on individuals’ capacity to
perform a task, which can be devoted either to active task
operations or to monitoring. Kahneman (1973) suggested
that the control over the allocation policy is to merely set
up global priorities, while the dynamic allocation of effort
during the task depends on the actual demands. Crucial to
such a view is the distinction between utilized and spare
capacity. Capacity is never fully utilized for algorithmic
mental operations, but there is always some spare capacity
left to monitor whether performance standards are met. Im-
portantly, the amount of capacity is not constant but depends
on current needs. An increase in demand immediately yields
a mobilization of capacity through an increase in arousal.

This means that the ratio of utilized versus spare capacity
is under continual evaluation and re-adjustment of priorities
toward sustainable performance. Thus, the extent to which
the cognitive system uses the capacity potentially available
for current task processing varies over a period of mental
work. In this way, performance stability depends on the
capacity that an individual continuously deploys to the task,
and performance variability is attributed to effort variations
(cf. Stuss et al., 2005, pp. 397–398).
An energetic view of sustained attention in active work

tasks implies the following question: What exactly makes
rest breaks effective with regard to their ability to improve
performance (or to prevent its deterioration) as compared
with a continuous-work condition in active tasks? Any vari-
ation in the effort deployed to the active cognitive operations
occurs, according to Kahneman (1973), because the alloca-
tion policy sometimes channels available capacity to other
activities. These other activities might be relevant to the task
at hand or entirely irrelevant. Thus, while prolonged mental
work decreases the capability to deploy attention to active
mental operations relative to (more passive) monitoring pro-
cesses, rest is predicted to restore this capability. Formally,
prolonged work affects the spare–utilized capacity ratio by
increasing spare over utilized capacity, while rest restores
the correct (optimal) ratio by increasing utilized over spare
capacity. Thus, rest is predicted to counteract suboptimal
levels of arousal, and thus to maintain stability of perfor-
mance (Hockey, 1997; Humphreys & Revelle, 1984).
Although there are some clues in the literature, a more
profound distributional and delta-plot analysis is necessary
to explicitly support such a position (De Jong, Liang, &
Lauber, 1994; Ridderinkhof, 2002; Steinborn, Langner,
Flehmig, & Huestegge, 2016).

PRESENT STUDY

Here, we examined the effects of brief rests on performance
in active work tasks, sometimes termed self-paced speed
tests (Van Breukelen et al., 1995), by studying the effects
of rest breaks, time-on-task (TOT), and central demand on
performance. We asked the following questions: (i) Does
rest improve performance? (ii) Is active rest (taking a walk)
better than passive rest (watching a video)? (iii) Do compen-
satory effects of rest (relative to non-rest) increase with
time-at-work? (iv) Are there differential effects of rest on
automatic and controlled processes (low vs high mental-
arithmetic demand)? (v) Are there differential effects of rest
on performance speed versus performance variability?
Although previous findings addressed related phenomena,
that is, differential effects of rest versus task changes on per-
formance (e.g., Helton & Russell, 2012; Ross, Russell, &
Helton, 2014), our question has not sufficiently been ad-
dressed. Note that TOT effects in mental-arithmetic do not
necessarily produce a global response slowing but might also
be subject to procedural learning (Compton & Logan, 1991;
Zbrodoff & Logan, 1990). Also, fatigue might affect these
processes differently at different points in practice (Healy,
Kole, Buck-Gengler, & Bourne, 2004; Healy, Wohldmann,
Sutton, & Bourne, 2006).
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METHOD

Participants

A sample of 68 (58 women) normal volunteers (mean
age=21.7years, SD=5.7) was tested. One participant refused
to finish the experiment and was excluded from the sample.
Another one did not completely fill out the questionnaire.

Apparatus and stimuli

The experiment was programmed using Psychopy (Peirce,
2009). The participants sat about 60 cm in front of the screen.
We used a version of the mental-addition and verification
tasks (Zbrodoff & Logan, 1990), using a response-stimulus
interval of 50ms. In each trial, an addition term together with
the result is presented, and the participants indicated whether
the result is either correct or incorrect. They were instructed
to verify a correct result by pressing the right key (right
index finger) and to falsify an incorrect result by pressing
the left key (left index finger). The task contained easy and
difficult items differing with respect to the chain length.
Items categorized as easy included only simple additions
(e.g., 4+5=9; 4+5=8), while items categorized as difficult
included chained additions (e.g., 4+5+1+2=12; 4+5+1
+2=11). There were 24 easy and 24 hard items. Each item
was presented randomly and equally often (total of 900 trials).

Self-report measures

Self-report measures were administered before and after the
experiment. The Dundee Stress State Questionnaire (DSSQ),
developed by Matthews et al. (2002), assesses the three
fundamental dimensions of subjective state (engagement,
distress, and worry). It has successfully been applied to per-
formance contexts (Helton, Funke, & Knott, 2014; Helton,
Matthews, & Warm, 2009; Matthews et al., 2010). We used
the short DSSQ (Helton & Naeswall, 2015) in the German
version (Langner, Eickhoff, & Steinborn, 2011; Langner,
Steinborn, Chatterjee, Sturm, & Willmes, 2010), consisting
of 30 items on a five-point Likert-type rating scale.

Design and procedure

We compared the two groups. The continuous-work group
(baseline, 35 participants) was required to work through
the entire test (900 trials) without a break, while the
rest-break group (critical, 32 participants) was given the op-
portunity to take a 3-min break after 300 and after 600 trials.
The break was either active or passive, consisting of either a
3-min walk or a 3-min watching of an educational
(explainity) video (cf. Krauskopf, Zahn, & Hesse, 2012).
During the passive rest, the participants remained in the
room and watched the film on the same computer. During
the active rest, the participants took an outdoor walk at
moderate intensity (they were instructed to walk as they do
normally). The order of conditions was counterbalanced,
such that half of the rest-break group passed through the
session, having first a walk and then a video, while the other
half of this group passed though the session, having first a
video and then a walk. The participants were instructed to re-
spond quickly and accurately. Self-reports were collected

before and after the experiment. Overall, the experiment
lasted about 50min.

RESULTS AND DISCUSSION

Data treatment

Incorrect responses (errors) and responses faster than 100ms
were regarded outliers. Note that because our hypotheses
implied an analysis of the RT distribution, we only used a
minimal trimming method by removing the three slowest
reactions for each of the experimental conditions.

Standard performance indices

For each of the experimental conditions, we computed the
RT mean (RTM) to index average response speed and the
RT coefficient of variation to index relative response-speed
variability, according to the suggestion of Flehmig et al.
(2007) and according to our own previous use of this method
(Flehmig, Steinborn, Westhoff, & Langner, 2010; Steinborn
et al., 2008; Steinborn et al., 2010; Steinborn et al., 2016).
Error percentage indicated the rate of incorrect responses
and served as a measure of response accuracy.

Distributional analysis

We computed a vincentized (interpolated) CDF of responses
with 19 percentiles, according to the suggestion of Ulrich,
Miller, and Schroeter (2007) and current use of this method
(e.g., Flehmig et al., 2010; Steinborn et al., 2016; Ulrich,
Schroeter, Leuthold, & Birngruber, 2015). We asked whether
rest affects the entire RT distribution by a parallel shift of all
percentiles, or alternatively, by a selective shift of only the
slowest CDF percentiles (indicating attentional lapses). Tomore
directly account for effects of distributional shape (skewness),
we also adopted an ex-Gaussian approach of RTs (Heathcote,
Popiel, & Mewhort, 1991; Steinhauser & Huebner, 2009),
according to the methodical rules provided by Lacouture and
Cousineau (2008). Parameters μ and σ can readily be
interpreted as localization and dispersion (around μ) indicators,
while τ is sensitive to experimentally induced right-tail density
accumulation effects (Steinborn et al., 2016).

Standard (GLM) analysis

The design contained one between-subject factor ‘group’
(continuous vs rest) and the within-subject factors ‘demand’
(low vs high) and ‘TOT’ (bins 1–3, containing 300 trials each).
Overall, response speed was not different for the continuous-
work group and the rest-break group (main effect of rest on
RTM, F< 1). The responses were faster for the low-demand
(vs the high-demand) condition, as indicated by the main effect
of demand on RTM [F(1,65)=819.0, p< .001]. The responses
became also faster over the experimental session, as indicated
by the main effect of TOT on RTM [F(1,65)=146.3,
p< .001]. Crucially, the relative benefit of rest breaks (vs con-
tinuous work) increased over the task session, as indicated by
the rest×TOT interaction effect on RTM [F(2,130)=6.2,
p< .01]. Moreover, this TOT-induced benefit of rest was
differentially more pronounced for difficult (vs easy) mental
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arithmetic, as indicated by a rest×demand×TOT interaction
effect on RTM [F(2,130)=5.6, p< .01]. The effects of the
relevant factors on RT and accuracy can be inspected visually in
Figure 1 and statistically in Table 1.

Distributional analysis (standard)

Figure 2 illustrates the rest-break (vs continuous) condition,
producing an effect in a rather uniform fashion (approximately
20ms for the low-demand condition and 200ms for the high-

demand condition). That is, although the RT distribution in
the rest-break experimental condition becomes visually some-
what less skewed over the testing period (Figure 2), relative
to that of the control condition, the effect is also present in the
fast percentiles of the CDF, although to a lesser degree.
Globally, the indices of distributional skewness are in corre-
spondence with the visual pattern. Although mental-arithmetic
demand and TOT separately produced an increase in distribu-
tional right-tail density, as indicated by a main effect of demand
on the ex-Gaussian τ parameter [F(1,65)=233.4, p< .001] and

Table 1. Effects of rest breaks, demand, and time-on-task (TOT) on standard performance parameters

Source RTM EP RTCV

df F p η2 F p η2 F p η2

1 Rest (group) 1.65 0.6 .438 0.01 0.4 .520 0.00 0.7 .378 0.00
2 Demand 1.65 819.0 .000 0.93 78.4 .000 0.55 139.2 .000 0.68
3 TOT 2.130 146.3 .000 0.71 16.6 .000 0.20 0.3 .719 0.00
4 Rest ×Demand 1.65 0.6 .436 0.00 0.0 .900 0.00 0.3 .553 0.00
5 Rest × TOT 2.130 6.2 .003 0.09 0.4 .676 0.00 2.2 .114 0.03
6 Demand ×TOT 2.130 68.8 .000 0.51 10.3 .000 0.14 8.3 .000 0.11
7 Rest ×Demand ×TOT 2.130 5.6 .005 0.08 0.1 .878 0.00 0.3 .748 0.00

Note: Effect size: partial η2; experimental factors: rest breaks (continuous-work group vs rest-break group), demand (easy vs hard mental-arithmetic condition),
time-on-task (TOT, bins 1–3).

Figure 1. Reaction time mean and error percentage as a function of the factors ‘rest’ (continuous-work group vs rest-break group), ‘demand’
(easy vs hard), and ‘time-on-task’ (TOT: bins 1–3) in continuous mental-arithmetic performance
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amain effect of TOT on the τ parameter [F(1,65)=6.1, p< .01],
there was neither a main effect nor an interaction effect related
to the factor rest on this parameter (Figure 3, Tables 1 and 2).

Self-report effects

Of interest was the question of whether these subjective
states change across the session, in particular, whether sub-
jective task engagement is relatively more affected in the
continuous-work condition than in the rest-break condition
(Hesse & Spies, 1996; Matthews et al., 2002). However,
although exactly this is visually indicated (Figure 4), the
results are not statistically significant (Table 3).

Sequence analysis

The experimental setup enabled us to directly compare the
effects of active and passive rest on performance, consider-
ing only the rest-break group. We compared the trial
sequence surrounding rest breaks on performance (i.e., a
pre–post comparison of the 100 trials before vs 100 trials
after rest), comparably for the walk and the watch condi-
tions. The GLM design contained the within-subject factors
‘rest’ (active vs passive), ‘sequence’ (before rest vs after
rest), and ‘demand’ (low vs high). Crucially, there was a
speed-up of responses after rest (vs before rest), as indicated

by the main effect of sequence on RTM [F(1,31) = 46.9,
p< .001], which was again relatively more pronounced
for the high-demand (vs low-demand) condition, as
indicted by the demand× sequence interaction effect on
RTM [F(1,31) = 35.1, p< .001]. However, it seems not to
matter whether the rest is taken in an active or passive form
(Table 4, Figures 5 and 6).

DISCUSSION

We examined self-paced performance as a function of the
factors ‘rest’, ‘demand’, and ‘TOT’. In addition, we col-
lected self-reports of subjective stress state before and after
the experimental session, using the DSSQ. The results can
be summarized as follows: Globally, rest breaks (vs no rest)
are beneficial for performance as these benefits increase with
increasing time at work. Importantly, the performance bene-
fit related to rest is differentially more pronounced for hard
than for easy mental arithmetic, and this effect of rest again
increases with time at work. In contrast to previous studies,
rest did not solely reduce the frequency of lapsing (or men-
tal blocks, respectively), as would be indicated by a de-
crease in distributional skewness, but affected responses
from the 19th percentile down to the 10th percentiles of
the CDF. At a subjective level, there was a tendency indi-
cating that rest retains task engagement (motivation).
Finally, whether rest is taken in an active (by taking a walk)
or passive (watching a video) fashion seems not be as
important as one might think.

Figure 2. Vincentized cumulative distributive functions of reaction
times for each combination of the factors ‘rest’ (continuous-work
group vs rest-break group), ‘demand’ (easy vs hard), and ‘TOT’ in
continuous mental-arithmetic performance

Figure 3. Delta plots of the ‘TOT’ effect. For each percentile, the
real-time difference between the critical experimental conditions
(TOT effect: bin 1 vs 3) is plotted against the mean of both con-
ditions in that percentile, separately for the continuous-work
group and the rest-break group
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Table 3. Results of the experimental effects on subjective state (pre–post experimental comparison)

Source Task engagement Distress Worry

df F p η2 F p η2 F p η2

1 Rest (group) 1.64 0.8 .351 0.01 0.0 .787 0.00 1.9 .172 0.03
2 TOT (pre–post) 1.64 1.8 .184 0.03 0.7 .421 0.01 0.4 .550 0.00
3 Rest × TOT 1.64 1.8 .184 0.03 2.1 .149 0.03 0.2 .635 0.00

Note: Effect size: partial η2; experimental factors: rest breaks (continuous-work group vs rest-break group), time-on-task (TOT: pre–post experimental
comparison).

Figure 4. The three fundamental dimensions of subjective-stress state (task engagement, distress, and worry) as a function of the factors ‘rest’
(continuous-work group vs rest-break group), ‘demand’ (easy vs hard mental arithmetic), and TOT (before vs after the experimental session)

Table 4. Effects of rest, demand, and sequence (before rest vs after rest) on standard performance parameters

Source RTM EP RTCV

df F p η2 F p η2 F p η2

1 Rest (walk vs video) 1.31 0.0 .899 0.00 1.2 .283 0.03 0.5 .480 0.02
2 Demand 1.31 492.6 .000 0.94 41.0 .000 0.57 25.7 .000 0.45
3 Sequence 1.31 46.9 .000 0.60 0.5 .486 0.02 0.0 .892 0.00
4 Rest ×Demand 1.31 0.1 .730 0.00 7.7 .009 0.20 0.6 .426 0.02
5 Rest × Sequence 1.31 0.2 .657 0.00 1.8 .195 0.05 1.9 .183 0.06
6 Demand × Sequence 1.31 35.1 .000 0.53 1.1 .298 0.04 0.7 .414 0.02
7 Rest ×Demand × Sequence 1.31 0.0 .986 0.00 0.3 .596 0.01 1.3 .258 0.04

Note: Effect size: partial η2; experimental factors: rest (walking vs watching a video), demand (easy vs hard mental arithmetic), sequence (before rest vs
after rest).

Table 2. Effects of rest breaks, demand, and time-on-task (TOT) on ex-Gaussian model parameters

Source μ (Mean) σ (Variability) τ (Skewness)

df F p η2 F p η2 F p η2

1 Rest (group) 1.65 0.1 .740 0.00 0.8 .386 0.01 0.7 .386 0.01
2 Demand 1.65 778.0 .000 0.92 269.3 .000 0.81 233.4 .000 0.78
3 TOT 2.130 153.0 .000 0.70 35.4 .000 0.35 6.1 .003 0.09
4 Rest ×Demand 1.65 0.4 .550 0.01 0.3 .614 0.00 0.3 .581 0.00
5 Rest × TOT 2.130 4.3 .015 0.06 1.2 .319 0.02 1.2 .310 0.02
6 Demand ×TOT 2.130 81.0 .000 0.56 23.5 .000 0.27 0.5 .637 0.00
7 Rest ×Demand ×TOT 2.130 2.1 .122 0.03 0.4 .681 0.00 1.6 .204 0.02

Note: Effect size: partial η2; experimental factors: rest breaks (continuous-work group vs rest-break group), demand (easy vs hard mental-arithmetic condition),
time-on-task (TOT, bins 1–3).
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GLOBAL EFFECTS OF REST BREAKS ON
PERFORMANCE

To examine the global effect of rest on performance, we
compared RT performance between a continuous-work
group and a rest-break group as a function of time at work,
using a mental-arithmetic paradigm (Flehmig et al., 2010;
Steinborn et al., 2008; Steinborn, Flehmig et al., 2010;
Zbrodoff & Logan, 1990). We observed the beneficial ef-
fects of rest (vs continuous performance) in our study as this
relative benefit increased with time at work. The responses
became differentially faster across the session for the rest
break (vs continuous-work), while error rate remained low
overall. Thus, our study revealed that rest globally improves
cognition. These findings are consistent with recent evidence
in the domain of vigilance-detection tasks (Ariga & Lieras,
2011; Helton & Russell, 2015) but also extend these find-
ings. In the self-paced situation, individuals have to actively
attain and maintain an appropriate work speed, because each
item follows immediately after the previous one (Steinborn
& Langner, 2012; Vallesi, Lozano, & Correa, 2013). It is
therefore even somewhat surprising that the individuals in
our continuous-work group were quite capable to sustain

performance over the task period with no considerable dete-
rioration of performance.

According to Healy, Bourne, and colleagues (Healy et al.,
2004; Healy et al., 2006), the result pattern observed in our
study is expectable because both facilitation and inhibition
occur during continuous mental arithmetic, with rest being
capable to reduce inhibition. Facilitation results primarily
from learning, while inhibition includes several processes,
including fatigue, satiation, or a loss of engagement (Inzlicht
& Schmeichel, 2012; Langner et al., 2011; Langner et al.,
2010; Mojzisch & Schulz-Hardt, 2007). We were also able
to show that the benefit of rest is more pronounced for hard
(vs easy) arithmetic. Figure 1 shows that the relative benefit
of rest increases differentially for the low-demand (vs high-
demand) condition, amounting to 20ms for the former but
200ms for the latter condition. Thus, demand seems to be
a critical variable that should not be ignored in future
research. The finding that combined effects of rest and time
at work are more pronounced under high (vs low) workload
is consistent with a model proposed by Mojzisch and Schulz-
Hardt (2007). Also, our results are consistent with findings
reporting beneficial effects of rest on stimulus-detection
performance in vigilance tasks, where response speed is less

Figure 5. Reaction time mean and error percentage as a function of the within-subject factors ‘rest’ (active vs passive), ‘demand’ (easy vs
hard), and ‘sequence’ (before vs after rest break) in continuous mental-arithmetic performance
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important (Ariga & Lieras, 2011; Helton & Russell, 2015;
Ralph, Onderwater, Thomson, & Smilek, 2016).

Some methodical rules should be considered in future
studies: First, the response–stimulus interval is important,
as it could be considered (among other functional mecha-
nisms) a micro-break (plus preparatory) condition (Jentzsch
& Dudschig, 2009; Rabbitt, 1969). The effects of rest breaks
are predicted to be large when this interval is short but
should decrease as this interval becomes longer. Historically,
the performance decrement on mean RT with time at work
has been explained by an increase in intraindividual
response-speed variability originating from an accumulated
refractory-phase effect, which can be reduced by increasing
the intertrial interval (Dodge, 1917; Robinson & Bills, 1926;
Weaver, 1942). Second, the length and frequency of rest breaks
are important. Bills (1943, pp. 113–129) reviewed the body of
empirical evidence in this domain, concluding that rest breaks
should be brief (3–6min) but frequent and should not exceed
8min in length. Bills (1943, pp. 113–129) reasoned that any in-
crease beyond the optimal length could result in a decrease in
motoric arousal and might also increase the likelihood that
individuals will lose the appropriate mindset to perform well
(Van Breukelen et al., 1995).

LOCAL EFFECTS OF REST BREAKS ON
PERFORMANCE

To examine the local effect of rest on performance, we
compared (within the rest-break group) the sequence of
(100) trials immediately before and after a rest break. This
analysis refers to a characteristic improvement of perfor-
mance immediately after (vs before) rest (Adams, 1954;
Bourne & Archer, 1956). The methodical approach is for-
mally equivalent to an analysis of trial sequences

surrounding a critical event, such as errors (Brewer & Smith,
1984; Steinborn, Flehmig, Bratzke, & Schroeter, 2012) or at-
tentional lapses (Bertelson & Joffe, 1963; Steinborn et al.,
2016). The responses were slow before rest but became faster
afterward. Crucially, this effect was differentially larger for the
high-demand mental-arithmetic condition as compared with
the low-demand mental-arithmetic condition (Figure 5). Thus,
our study revealed that rest locally (i.e., before vs after rest) im-
proves performance in the context of a mental-arithmetic task.
While the global rest-break effect might be a general phenome-
non that can unequivocally be observed in both mental-work
tasks (Healy et al., 2004; Healy et al., 2006) and vigilance-
detection tasks (Ariga & Lieras, 2011; Helton & Russell,
2015), the local rest-break effect might be specific to the former
as compared with the latter domain.
We hypothesized that active rest should be more effective

than passive rest regarding its utility to restore cognitive re-
sources during mental arithmetic. However, there was no
difference between forms of rest, neither visually nor statisti-
cally (Table 4, Figures 5 and 6). This finding is particularly in-
teresting, because it shows a divergence between what would
intuitively be expected (Kahneman, 2013, p. 39) and what is
actually observed in an experimental study. Very indirectly,
studies on the effect of exercise on cognition would also de-
liver a clue as to the expectation that active forms of rest such
as walking should be better than passive ones regarding both
performance measures and subjective experience (Kanning &
Schlicht, 2010; Sanabria et al., 2011; Thayer, Newman, &
McClain, 1994; Tomporowski, 2003). Thus, we feel obliged
at this point to explain the lack of any difference — or put it
another way— the perfect similarity between both conditions
in our study. We argue that the critical elements in the study
of active versus passive rest depend on three key variables that
might be addressed in future research: the task paradigm, the
environmental conditions, and walking (exercise) intensity
(Brisswalter, Collardeau, & Arcelin, 2002).
In mental-work tasks, individuals have to actively engage in

cognitive activity, which means that task sets must be attained
and maintained throughout the session. This is accompanied
by a rather global activation and greater scope for compensa-
tory effects of momentarily decreased mental efficiency. In
vigilance-detection tasks, on the other hand, individuals
engage in a more passive watch-keeping activity. There is
no doubt that attentional monitoring involves kinds of mental
activity that are experienced as effortful and tap on cognitive
resources (Warm, Parasuraman, & Matthews, 2008), but the
extent and type of demand being placed upon individuals
are particularly different, with respect to both proactive
(e.g., the opportunity to actively engage) and reactive (e.g.,
response-induced motoric arousal) mechanisms. As reported
by Bratzke et al. and Steinborn et al. (Bratzke, Rolke,
Steinborn, & Ulrich, 2009; Bratzke, Steinborn, Rolke, &
Ulrich, 2012; Steinborn, Bratzke, et al., 2010), the deteriora-
tion of performance as a result of energetic variables (sleep
loss and circadian rhythms) is less severe for speeded-
decision tasks than for vigilance-detection tasks. Presumably,
there is more room to compensate for momentary states of
low arousal by a mobilization of effort in speeded tasks than
to increase attention in vigilance-detection tasks (Sanders,
1998, pp. 394–430).

Figure 6. Vincentized cumulative distributive functions of reaction
times for each combination of the within-subject factors ‘rest’ (ac-
tive vs passive), ‘demand’ (easy vs hard), and ‘sequence’ (before vs

after rest break) in continuous mental-arithmetic performance
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EFFECT OF REST BREAKS ON PERFORMANCE
SPEED VERSUS VARIABILITY

Probability distributions have often been analyzed to gain
information beyond that obtainable from the RT mean alone
(Miller, 2006; Reynolds & Miller, 2009). The incremental
information available from the analysis of empirical RT
distributions provides important clues as to the precise
causes of differences in experimental conditions in the RT
mean (Heathcote et al., 1991; Leth-Steensen, Elbaz, &
Douglas, 2000; Steinhauser & Huebner, 2009). The present
study contributes to this trend of analyzing RT distributions
by addressing the question of whether the effect of rest
breaks on the mean RT performance is uniformly observed
across all percentiles of the CDF, or alternatively, whether
the effect is selective with respect to the slowest percentiles
of the CDF, respectively (Steinborn et al., 2016). Is the effect
of rest present in every trial or does it instead arise only in
occasional trials, perhaps as a result of an occasional failure
to maintain attentional focus? In general, our results indicate
that rest breaks are not that selective (with respect to only the
slowest CDF percentiles) as one might expect from previous
findings and theoretical considerations (refer to Figures 2, 3,
and 6). One might conclude, therefore, that rest primarily
improved processing speed in our study.
We asked whether the effect of rest originates from a

selective shift of slower CDF percentiles or from a parallel
effect of all CDF percentiles. The former is indicated by
the proportion of time units, during which operations are car-
ried out effectively (vs ineffectively, as a result of lapsing),
while the latter refers to mere speed-up in the computation
of processes. Our understanding of attentional restoration
by rest might depend (at least partly) on whether rest affects
all percentiles uniformly (speed) or selectively (variability).
While the factor demand separately had a strong effect on
RT variability (more demand increases distributional skew-
ness), the factor rest improves performance fairly equally.
Very tentatively, one could infer from the visual patterning
that the global rest-break effect is somewhat more pro-
nounced in the slower than in the faster percentiles.
Figure 3 displays a delta plot of the TOT effect, separately
for the continuous-work condition and the rest-break condi-
tion. A delta plot is obtained by calculating the RT difference
as induced by an experimental manipulation against the
mean of the experimental conditions for each of the percen-
tiles. By this means, the effect of the critical factor can be
evaluated relative to the mean performance level.
The delta-plot analysis indicates a relative benefit of the

rest-break condition over the continuous-work condition
with respect to the slower CDF percentiles. This analysis
might deliver a clue as to the possibility that the individuals
in the rest-break condition did not only become faster overall
but especially became more persistent. In the overall picture,
however, we conclude that rest improves self-paced RT
performance rather uniformly. The data indicate that rest
primarily improves processing speed — a result that stands
somewhat in contrast to previous research. In fact, it has
been theorized that the probability of committing attentional
failure (mental blocks) is reduced through rest. For example,
Bertelson and Joffe (1963) used self-paced four-choice task

with four stimuli mapped onto four corresponding keys.
Sanders and Hoogenboom (1970) used a six-choice RT task
with six stimuli mapped onto six keys. This arrangement is
much simpler and more repetitive than the one used in our
study, providing fewer possibilities for procedural learning.
The difference between these and our results might therefore
be a result of the differences in the potential for procedural
learning (Lim, Teng, Wong, & Chee, 2016; Steinborn,
Bratzke, et al., 2010).

CONCLUSION AND FUTURE DIRECTIONS

The general message of our study is that rest improved
performance, as this effect increased with time at work,
being more pronounced for high-demand mental arithmetic
than for low-demand mental arithmetic. Our study might
provide a useful extension to previous research in the
domain of vigilance-detection tasks (Ariga & Lieras, 2011;
Helton & Russell, 2015) as well as practical implications
for the utility of rest breaks at work, during psychometric
testing (Hagemeister, 2007; Krumm, Schmidt-Atzert, &
Eschert, 2008) and in everyday life (cf. Flehmig, Steinborn,
Langner, & Westhoff, 2007). Future research might orient
their focus on specific mechanisms supported by brief rest
or other energetical variables such as background stimulation
(Hommel, Fischer, Colzato, van den Wildenberg, & Cellini,
2012; Szalma & Hancock, 2011), supervision (Brewer,
1995; Brewer & Ridgway, 1998; Wühr & Huestegge,
2010), or evaluative pressure (Gray, 2011). Further, it
remains to be clarified of whether rest enhances performance
effectiveness through a restored ability to focus on the
relevant information-processing features, or alternatively,
through a temporal stabilization of continuous information
processing. It might also be explored whether rest supports
the use of effective mental representations which support
effective strategies. In the light of the pronounced effect of
rest on performance in difficult tasks, this issue could be
especially interesting in the context of multitasking demands
(Huestegge, Pieczykolan, & Koch, 2014) or visual search in
complex environments (Huestegge & Radach, 2012).
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