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Abstract 

Conventional methods for producing test norms are often plagued with “jumps” or “gaps” (i.e., 

discontinuities) in norm tables and low confidence for assessing extreme scores. We propose a 

new approach for producing continuous test norms to address these problems that also has the 

added advantage of not requiring assumptions about the distribution of the raw data: Norm 

values are established from raw data by modeling the latter ones as a function of both percentile 

scores and an explanatory variable (e.g., age). The proposed method appears to minimize bias 

arising from sampling and measurement error, while handling marked deviations from normality 

– such as are commonplace in clinical samples. In addition to step-by-step instructions in how to 

apply this method, we demonstrate its advantages over conventional discrete norming procedures 

using norming data from two different psychometric tests, employing either age norms (N = 

3.555) or grade norms (N = 1.400).   
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A good quality psychometric test has to satisfy certain criteria, usually defined as 

objectivity, validity and reliability (e.g., Anastasi & Ubrina, 1997). However another important 

facet exists that is seldom explored in detail, yet is often equally vital to the testing process – 

namely, the way a test is actually normed.  

Clearly, when tests are mastery or criterion-referenced they do not require norms, for 

example those assigning competence levels to person parameters (e.g., proficiency scaling in 

PISA). However, for the vast majority of psychometric constructs, the comparison to a 

representative norm is crucial. This is especially true when group-based studies and large scale 

assessments are not available, such as in the field of applied diagnostics, when educational or 

clinical diagnosis at an individual level is required. Notably, diagnostic manuals often refer to 

percentiles when determining clinical disorders. For instance the DSM-5 (American Psychiatric 

Association, 2013, p. 69), although acknowledging that norm-referenced cutoff scores are 

somewhat arbitrary, states that academic skills below the 7th percentile are most consistent with 

specific learning disabilities. In many cases remedial funding is only available if performance 

actually is below this predefined threshold. Although good psychometric and clinical practice 

need not rigidly adhere to cutoff scores and instead use a dimensional approach, it is still 

important to precisely assess deviation from the average. Furthermore, in educational and 

academic contexts, placement decisions, college admissions or the assessment of special 

educational needs rely on interindividual comparisons of the students’ performances relative to 

others. Hence the development of optimal norming procedures is necessary. 

Challenges of Test Norming 

Two major tasks confront the researcher when norming a test, both of which we describe 

in some detail to lay the foundation for a continuous approach and for readers who might not be 
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familiar with the specifics. First, a suitable standardization sample must be recruited and second, 

a suitable norm score from the raw data must be estimated. 

Problems of data collection. 

Recruiting a standardization sample that is representative of the target population presents 

formidable challenges (cf. Gregory, 1996). As in experimental designs, confounding variables 

and noise factors potentially influencing the test scores have to be identified. Such variables 

might include age, sex, ethnic group, or geographic region.  

If the effect of these variables on test scores is large and relevant to the interpretation of 

test results, the variables are often accounted for in norm tables as explanatory variables. Thus, in 

talent assessment, age or grade are explanatory variables because the performance on 

intelligence or academic tests varies with the age or grade of an examinee. Therefore, such tests 

normally report either age or grade norms, which however, poses a new challenge. Specifically, 

when age or grade relates strongly to test performance and the given test norms cover a large 

range of ages or grades, a correspondingly large number of subsamples has to be included in the 

standardization sample. For example, the Wechsler Intelligence Scale for Children® – Fifth 

Edition (WISC® – V; Wechsler, 2014) offers normative age brackets which span four months 

each. As the test ranges from age 6;0 to age 16;11, norms for 33 age brackets are reported. 

Accordingly, to obtain a representative subsample for each age bracket would require a huge 

number of children, thus precluding and inhibiting test development.  

Alternatively, it would be possible to enlarge the age or grade span of each age bracket, 

thus replacing 4-month brackets with 12-month brackets. Although more cost-effective, it would 

lead to errors for those examinees whose age markedly differs from the average age of their own 
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normative age bracket (e.g., a child aged 10;0 is six months younger than the average 10-year-

old).  

Briefly, effective curve fitting techniques are needed to mathematically model the 

influence of important explanatory variables on the measured ability, which considerably reduces 

the total sample size required (cf. Zhu & Chen, 2011) and allows norm generation with high 

precision (e.g., age norms could be calculated down to the very day).  

Problems of norm score generation.  

The second task in establishing norms is to derive norm values from the raw score 

distribution of a test. While the first task (i.e., recruiting a representative standardization sample) 

is usually described in detail in test manuals and text books, the second one is only rarely dealt 

with in depth – if at all. For example, in the manual of the Kaufman Assessment Battery for 

Children, Second Edition (KABCTM – II, Kaufman & Kaufman, 2004) approximately 10 pages 

are dedicated to the very precise description of how the data were collected and how the 

standardization sample was stratified. This can be regarded as best practice. However, only one 

brief paragraph deals with the question of how the norm scores were derived from the raw scores 

(Kaufman & Kaufman, 2004, p. 85): 

… Smoothed subtest norms were then created on the basis of these raw scores. The 

first step was to calculate the scaled score (mean of 10, standard deviation of 3) 

corresponding to the actual midinterval percentile rank for each raw score value at each 

half-year or year of age. This had the effect of normalizing the score distribution at each 

age. Next, these scaled scores were smoothed both vertically (within age) and horizontally 

(across ages) using a computer program created for that purpose. Smoothing proceeded 

iteratively until the criteria for smoothness were met. 
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The paragraph describes that after normalizing the data, mathematical techniques were 

not only used to model the relationship between intelligence and age (“horizontal smoothing”) 

but also to model the relationship between raw scores and derived norm scores (“vertical 

smoothing”). However, the employed algorithms along with the criteria for “smoothness” were 

not sufficiently specified. This scant level of detail is not the exception but the rule in test 

manuals. Indeed, information about modeling the relationship between raw scores and derived 

norm scores is also absent from text books on test construction (e.g., Crocker & Algina, 1986; 

Gregory, 1996). 

In fact, several difficulties present themselves when transforming raw scores into 

percentiles or normalized standard scores. One problem associated with the transformation of 

raw scores into percentiles is that the standardization sample almost never delivers percentile 

ranks for each raw score achievable in the test. The more extreme a test result and the smaller the 

standardization sample, the higher the probability of a “gap” in the transformation between raw 

scores and percentiles is. In the WISC® – V each normative age-bracket includes 200 

participants. Despite this generous sample size, there is a relatively high probability (p = .58) that 

all 200 participants achieve scores within three standard deviations of the mean (IQ score 

between 55 and 145). Expressed differently, there is only a 42% chance that, despite having a 

large norm sample, a single participant will have provided raw data for the extreme ends of the 

test (i.e., IQ < 55 or IQ > 145). To close the gaps, “vertical” modelling is needed, that is, 

modelling of the relation between raw scores and percentiles for any age bracket or level of 

explanatory variable.  

A second problem in deriving norm scores also arises when extreme scores come into 

play: Extreme test results coupled with small standardization samples result in distortion in the 
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assignment of percentiles to raw scores based on the distribution of the standardization sample. 

Three major sources of error account for this distortion: a) sampling error, b) a lack of sample 

representativeness, and c) measurement error. Crucially, sampling error can occur even if the 

sample is perfectly stratified and the measurement error is low. In such cases, sampling error 

arises from random variation in the selection of individuals from a given population and 

constitutes an additional error source solely related to test norms and not to measurement errors. 

When drawing random samples of N = 100 from a perfectly normally distributed population (M 

= 100 and SD = 15), in 95% of all cases, the percentile rank of five lies between 76 to 87, thus 

spanning more than two thirds of a standard deviation1! In contrast, the equivalent interval 

around the 50th percentile ranges approximately from 97.5 to 102.5, spanning only one third of a 

standard deviation. Crucially and as already pointed out, these intervals are not based on 

measurement error (i.e., on the reliability of a test), but are simply a consequence of sampling 

error in relation to extreme scores. In the context of psychometric testing and norming, this 

simple mathematical phenomenon puts additional uncertainty into a test result – uncertainty that 

is rarely quantified in psychometric tests. 

The second source of error, namely the lack of sample representativeness, essentially 

belongs to the problem of data collection. Although this point was already described earlier 

qualitatively, we want to give a quantitative example here. Let us assume a hypothetical test 

yielding normally distributed raw scores in the reference population (M = 100 and SD = 15) but 

whose normative sample was not representative (M = 95, SD = 10). Whereas the error caused by 

a wrong average raw score of the standardization sample is constant for all locations, a non-

                                                 
1 This can be done via Monte Carlo simulations by repeatedly generating N = 100 random number and 

determining the variation of the percentiles of the drawn samples or by approximating binomial distributions (e.g., 
Brown, Cai & DasGupta, 2001). 
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representative standard deviation of 10 instead of 15 points again has more impact for the 

extreme scores. For example, a child with a raw score of 105 and therefore having a true z-score 

of 0.33 lies at z = 1.0 on the unrepresentative subsample (that is 10 points above the norm mean 

of 95). A child with a raw score of 125 and hence receiving a true z-score of 1.67 would be at z = 

3.0 on this non-representative test norm – demonstrating an inflation of norming error for more 

extreme locations.  

Finally, the third reason for erroneous transformations between raw scores and person 

locations arises from measurement error caused by inadequate test reliability. On an individual 

basis, measurement error is normally highest for extreme test performance and smallest around 

the midpoint of the raw score distribution – an effect that is so far adequately addressed mainly 

within IRT approaches (comp. Klauer, 1991). Additionally, as far as the norm sample is 

concerned, extreme standard scores are based on scarce observations. Therefore, the empirical 

standard scores vary most extremely around the true population value for extreme person 

locations. 

As described next, mathematical models have the potential to better estimate the 

relationship between raw scores and person locations than conventional norming techniques 

while reducing the norming error, removing discontinuous jumps, smoothing out distortions in 

subsamples and using context information from adjacent age brackets or subsamples to adjust the 

shape of the distribution – which may have particular benefits for extreme test scores. 

Continuous Norming: A Solution to the Mentioned Problems? 

First attempts at modeling the relation between raw scores, person locations and 

additional explanatory variables to minimize norming errors were made by Gorsuch (1983, as 

cited in Zachary & Gorsuch, 1985). He suggested a parametric “continuous norming” procedure, 
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which is illustrated in Figure 1. As a first step, means and standard deviations of the raw scores 

are calculated for all age brackets or grades included in the standardization sample. 

Subsequently, polynomial regression is used to estimate means and standard deviations as 

functions of age or grade. Finally, norm scores (e.g., percentiles) are computed for any age or 

grade included in the standardization sample based on Gaussian probability density functions 

with the estimated means and standard deviations as parameters. Unfortunately, the last step is 

only valid (cf. Taylor, 1998) if the raw scores are in fact normally distributed. However, in 

psychometric scales, especially in those that cover wide age ranges, skewness of the raw scores 

seems to be widespread. Often it is not possible to cover the whole proficiency range with items 

of adequate difficulty, resulting in floor or ceiling effects. Figure 1, which is based on the 

original test data presented in Example 1 of this article, gives an illustrative example. The 

leftmost distribution (Age Group 1) represents a relatively low age with no marked floor or 

ceiling effect. The raw scores at this age do not deviate significantly from normal distribution. 

Therefore, modeling the probability density of the raw scores with estimated mean and standard 

deviation from Step 2 and deriving percentiles out of the estimated distribution works well. 

However, in Age Group 3, which represents a high age bracket for this standardization sample, 

the raw score distribution shows marked skewness in the form of a ceiling effect. This implies 

that in this age group the empirical percentiles deviate significantly from the percentiles as 

indicated by the estimated Gaussian probability density function in Step 3. For example, the 

empirical percentile of 90 is allocated at a much lower raw score than the estimated one. 

Therefore, if continuous norming is based on the assumption of normality, new kinds of norming 

errors come into play, which are again most prevalent for extreme test scores.  
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Recognizing the need for data smoothing, Van Breukelen and Vlaeyen (2005) used a 

variation of a regression-based parametric norming approach. Consistent with Gorsuch (1983, as 

cited in Zachary & Gorsuch, 1985), they modeled means of the raw score distributions, 

including, alongside chronological age, further predictors in their regression analysis to increase 

prediction accuracy for an individual participant. However, in contrast to Gorsuch, it is a key 

assumption of their method that the variances of the distributions are constant across the total 

range of predictors. This assumption of homoscedasticity is probably only rarely fulfilled in 

psychometric tests, particularly in developmental tests when younger children remain on the 

floor or older children reach the ceiling (cf. Figure 1). 

As a potential solution to deviations from normality, different researchers (e.g., Cole, 

1988; Cole & Green, 1992; Rigby & Stasinopoulos, 2004, 2005, 2006) used so-called Box-Cox 

power transformations to convert skew or kurtotic data into normal distributions. These 

transformations have mainly been used to fit physiological variables such as height, weight (e.g., 

Cole, 1988), triceps skinfold (Cole & Green, 1992), body mass index (Rigby & Stasinopoulos, 

2005) or blood flow (Rigby & Stasinopoulos, 2006). However, the approach only works for 

variables with small or moderate skewness. Unfortunately, most psychometric tests contain floor 

or ceiling effects at least in some age brackets. As a consequence, Box-Cox power 

transformations cannot be applied to these data successfully. 

On the one hand, continuous norming seems to have many advantages, for example, it 

avoids artificial age boundaries and increases the precision of norm score estimation. On the 

other hand, up to now, no adequate methods exist that are able to deal with data markedly 

deviating from a normal distribution – which is often the case in norm-oriented psychometric 

tests. Accordingly, Sijtsma (2012) stated that continuous norming would be of “great interest to 
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test construction but little psychometric research has been done so far to study the method” (p. 

10). 

In this article, a new approach is presented based on Taylor polynomials. Taylor 

polynomials (for a mathematical description see Dienes, 1957) are a mathematical means to 

numerically model any function as long as this function is smooth in a mathematical sense2. 

Therefore, normality and homogeneity of variance are no requirements for the use of Taylor 

polynomials. Indeed, parametric continuous norming as described previously in this article also 

draws on Taylor polynomials, namely when means and standard deviations are modelled as 

functions of different predictors via polynomial regression. In contrast to these parametric 

procedures, we do not model the different distribution parameters separately as functions of age 

groups or grades. Instead, we use Taylor polynomials to directly specify the functional relation 

between raw scores, person locations and age or grade at the same time, thereby minimizing the 

total mean squared error. Geometrically speaking, this approach approximates a hyperplane with 

the best fit to the data, while simultaneously smoothing the data and filling the gaps between 

distinct norm groups and missing empirical data for specific test outcomes. Notably, we do not 

need any assumptions on the distribution of the raw scores. The method is completely non 

parametric and therefore inherently more robust against deviations from normality.  

We endeavor to show that Taylor polynomials (a) can be applied to any form of raw score 

distribution including scales with floor or ceiling effects, (b) fit the data sufficiently well, even 

for extreme raw scores, (c) provide good results even with small sample sizes, and (d) can be 

applied easily with standard statistical software (see step-by-step guide and electronic 

supplemental material). It is demonstrated that using this approach reduces many forms of 

                                                 
2 A function is smooth in a mathematical sense if it has derivatives of all orders. With regard to the graph, it 

means that the function has no angles or undefined points. 
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norming error that occur with conventional norming procedures and therefore enhances the 

quality of psychometric instruments. 

Non-Parametric Continuous Norming - Introduction of a new Procedure 

In the presented continuous norming approach the raw score r is modeled as a continuous 

function of person location l (i.e., percentile or normalized standard score) and an explanatory 

variable a (e.g., age or grade): 

     .     (1) 

According to the mathematical theory of Taylor polynomials the polynomial  

         ,     (2) 

is a suitable estimation of r, with the integer k denoting a smoothing parameter (for the exact 

mathematical derivation see supplemental material S1). The constants cst can conveniently be 

determined by multiple regression with the raw score as dependent variable and all products lsat 

(see Formula 2) as independent variables.  

The procedure can easily be performed with any current data analysis software. In the 

following section, we will provide a step-by-step guide on how to perform non-parametric 

continuous norming and how to retrieve norm data (please have a look at the electronic support 

material available through https://go.uniwue.de/cn, which demonstrates the procedure step by 

step via example data material and an SPSS syntax file): 

1. Split the norm sample into subsamples, for example into grade levels. In case of 

continuous explanatory variables (e.g., age), build a discrete grouping variable 

(e.g., age brackets).  
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2. Determine the percentiles of the participants in each subsample. If necessary, the 

percentiles can be transformed into normalized standard scores (e.g., z-scores) 

using a rank-based inverse normal transformation.  

3. Compute powers of the continuous explanatory variable a as well as of the person 

location l (i.e., percentile or standard score) for each participant within each 

subsample (i.e., a, a2, a3 … ak, l1, l2, l3 … lk). Compute all products of these 

powers (i.e., a1l1, a2l1, a3l1, … akl1, a1l2, a2l2, a3l2, … akl2, …, a1lk, a2lk, a3lk, … 

aklk). As a starting point, powers up to k = 5 might be appropriate. We later 

analyze changes in model fit up to power eight. 

4. Run a stepwise multiple regression with all powers and products of powers of a 

and l computed in Step 3 as the independent variables and the raw score as the 

dependent variable. 

5. Define the Taylor polynomial function according to Formula 2 by choosing the 

significant variables from the stepwise regression and taking their unstandardized 

beta weights as the constants cst in the polynomial. 

So far in this paper, we have described how the raw score r is modeled as a continuous 

function of person location l (e.g., percentile or z-score) and explanatory variable a (e.g., age). 

The resulting formula is sufficient to create norm tables for test manuals. For example, to 

compute the lowest raw score pertaining to a T-score of 32 simply insert the lower boundary of 

the performance interval (i.e., l = 31.5)3 into Formula 2 together with the mean age of the 

considered age bracket and round it up to the next integer. Subsequently, to compute the highest 

raw score pertaining to a T-score of 32 insert the upper boundary of the performance interval 

                                                 
3 Beware that the used norm scale has to accord with the one used in the regression analysis. 
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(i.e., l = 32.5) into the formula and round it down to the next integer. This can be done for age 

brackets as narrow and norm scales as precise as suitable. However, in some cases it might be 

preferred or necessary (and also be more intuitive) to directly compute the norm score out of the 

specific raw score and age of an examinee. The easiest way to get to this inverse transformation 

of Formula 2 is an iterative one. To this purpose, an additional sixth step is necessary: 

6. Insert different values for l in Formula 2 until the raw score in question is 

approximated with sufficient precision4.  

Example 1 

Data 

The procedure described above is illustrated with standardization data from a standard 

vocabulary test (A. Lenhard, Lenhard, Suggate, & Segerer, 2015). The standardization sample 

included N = 3555 children and adolescents whose age ranged from 2.59 to 17.99 years (M = 

10.43, SD = 3.34). The sample was representative of the population in terms of gender, 

education, and ethnic background. 

Data Fit and Extrapolation 

Implementation of the procedure.  

Step 1.  Discrete age brackets were built from the continuously distributed age variable. 

For our first analysis we used a breakdown of the sample into 15 normative age brackets, each 

spanning 12 months. We investigate later in this article the invariance of the procedure against 

different age spans of the normative age brackets. 

                                                 
4 The supplement 4 of the electronic support material available through https://go.uniwue.de/cn includes a 

calculator that computes individual norm values and as well generates norm tables for specific age values. 
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Step 2.  The location l of each participant was estimated based on the empirical raw score 

distribution within each age bracket. To this purpose, the percentile of each participant was read 

out of the raw score distribution (ranking procedure according to Blom, 1958) and transformed 

into a z-score using a rank-based inverse normal transformation. The resulting z-scores are called 

empirical z-scores (zemp) in the following. The transformation from percentiles to z-scores is not 

necessary for the outlined continuous norming procedure itself, but for the subsequent analyses. 

Step 3.  All powers of l (i.e., z-scores) and a (i.e., age) and all linear combinations of the 

powers of l and a were calculated up to the 8th power. To determine which smoothing parameter 

k (see Formula 2) provided optimal results, eight different multiple regressions were performed 

with k ranging from 1 to 8. This meant that the number of predictors5 in the regression analyses 

varied from 3 for k = 1 to 80 for k = 8. While the model fit potentially increases with k, the same 

is true for the number of observations necessary for a regression analysis. k is therefore 

essentially limited by the sample size. (In the SPSS example syntax, the maximum value for k is 

5.) Moreover, if k gets too high, there is a danger of model overfit, in the sense of modeling 

sampling or measurement error (comp. section “Example 2 – Cross-Validation” in this paper). 

Step 4.  All variables computed in Step 1 and 2 were used as independent variables in a 

multiple regression. The raw score served as the dependent variable. The inclusion of predictors 

was carried out stepwise until the inclusion of another predictor did not lead to significant 

changes (p < .05) of F for the entire model.  

Step 5.  All significant independent variables were subsequently used as addends in the 

Taylor polynomial, each multiplied with the according beta weight from the regression analysis 

as determined by Formula 2. 

                                                 
5 The number of predictors amounts to k2+ 2k. 
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Step 6.  For our further analyses, it was also necessary to determine l as a function of r 

and a for each participant. To do this, the additional Step 6 was carried out. To this purpose, we 

inserted in Formula 2 the exact age of each participant and subsequently ran through different 

values for l iteratively until the raw score of each participant was matched with a sufficiently 

high precision.  

Results and discussion.  

As can be seen in Table 1, the coefficient of determination reached its maximum of R2 = 

.99 for k = 3. In other words, the inclusion of higher powers of age and location did not further 

improve the data fit at first glance. Figure 2 illustrates the results of the non-parametric 

continuous norming procedure for four different values of k (3, 4, 5 and 6). All curves are 

smooth and fit the data well. Relatively large deviations from the empirical z-scores (displayed 

by the marks) can only be seen for a z-score of -2. This is probably an effect of high 

measurement error for very low raw scores as discussed in the introduction. As the suggested 

non-parametric continuous norming procedure uses context information of all performance levels 

to adjust the shape of one specific curve, it can be assumed that the smoothness of the models 

reflects the true population curve better than the empirical data.  

 While the coefficients of determination suggest that all models with k ≥ 3 fit the  

data equally well, Figure 2 and Figure 3 reveal that they differ when it comes to extrapolation to 

age ranges or person locations not included in the standardization sample. The statistical problem 

with extrapolation is that it cannot be evaluated with empirical data because they are not 

available, otherwise extrapolation would not be required. However, plausibility and data from 

external sources may give some hints as to whether a model is suitable or not. For example, the 

vocabulary test has 228 items. Therefore, a model that adequately maps the ceiling effect of the 
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test should not exceed raw scores of 228. From Figure 2 it can be seen that if extrapolated to the 

age of 19, this holds only true for the models with k ≥ 5. On the other hand, if k is too high (e.g., 

k = 6) the models contain intersecting lines for different z-scores, which cannot occur in manifest 

norming data due to the invariance of the order of percent ranks. Obviously, the model with k = 5 

seems to be the best model as far as extrapolation to higher age ranges is concerned. Figure 3 

depicts extrapolation to person locations not included in the standardization sample at age 16. 

Again, it can be seen that if k is too small (e.g., k = 3), the model gives implausible values (raw 

scores > 228) for very high person locations. On the other hand, if k is too high (e.g., k = 7), the 

Taylor polynomial displays a maximum raw score at a finite person location and then decreases 

to lower raw scores, which means that higher person locations are related with lower raw scores 

beyond this maximum point. This is a numerical effect that contradicts the definition of person 

location. Therefore, this part of the function could not be used for real psychometric tests. For k 

= 7, the maximum raw score of 220 is reached at z-score = 2.5, for k = 6 the maximum raw score 

is 221, which is reached at a z-score of 2.9. For k = 5, the Taylor polynomial also displays a 

maximum (r = 224), however, it is located at a very high z-score (z-score = 3.6) and the raw 

score decreases very slowly beyond that point. Therefore, it is of little psychometric relevance. 

Again, the model with k = 5 (i.e., that includes up to the fifth power of l and a) seems to be the 

most suitable one. In the following, this model is called the k5-Model. The model includes 11 

predictors (a, l * a, l2 * a, l2 * a2, l3 * a, l3 * a3, l4, a4, a5, l5 * a, l5 * a5).  

 In the present section it was shown that the suggested non-parametric norming procedure 

not only has the potential to map the empirical data precisely but also to go beyond the empirical 

data base and to deliver models that allow at least moderate extrapolation as far as both age and 

location are concerned.  
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Invariance of Non-Parametric Continuous Norming Against Different Methods of 

Estimation of l 

Differences between the age of the examinee and the mean age of the corresponding age 

bracket are a main source of norming related error in individual test results (compare electronic 

support material S2). The extent of this error can be all the greater with an increasing impact of 

the explanatory variable on test scores (e.g., due to fast development at a specific age). In order 

to reduce this problem, age brackets can be reduced to shorter time intervals. However, on the 

manifest level, practical reasons like the size of the necessary norm sample set boundaries. 

Moreover, smaller age brackets also entail more uncertainty with regard to the estimation of 

population parameters. Therefore, if age brackets of different size yielded different test results, it 

would be difficult to decide, which method should be preferred.  

From a theoretical perspective non-parametric continuous norming should reduce 

measurement errors that stem from small sample sizes, because each data point of the continuous 

norm contains information not only from a single age bracket but from the whole sample. Hence, 

it should be relatively invariant regarding the method used to estimate the location of the 

participants in the sample. To test this hypothesis, we used four different methods to estimate the 

location of the participants. For the first two methods, we divided the sample into 15 age 

brackets that each comprised an age span of 1 year (Method 1a) vs. 30 age brackets that each 

comprised 6 months (Method 1b). Subsequently we estimated the location of each participant 

with rank-based inverse normal transformation. Method 2a and 2b were also carried out with 

rank-based inverse normal transformation. However, this time we used an individual age bracket 

for each participant that was based on a sliding window. For example, for Method 2a, we 

compared each participant with all participants of the sample that were up to 6 months younger 
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or up to 6 months older than the participant. This means that like in Method 1a, the age bracket 

comprised an age span of 1 year, but the average age of the age bracket exactly matched the age 

of the participant. Hence, the method eliminated the age-related norming error described in the 

previous section. Method 2b corresponded to Method 2a. However, this time we used an age 

span of 6 months. Subsequently, we performed non-parametric continuous norming for all four 

methods. As the k5-Model had turned out to be the best in the first analyses (i.e., with Method 

1a), we also chose k = 5 for the other three methods. This procedure yielded four additional 

methods, namely Method 3a: k5-Model, estimation of l based on Method 1a; Method 3b: k5-

Model, estimation of l based on Method 1b; Method 4a: k5-Model, estimation of l based on 

Method 2a; Method 4b: k5-Model, estimation of l based on Method 2a (also see Table 2 to get an 

overview of the different methods).  

 Data analysis. 

As Method 2a could only be applied for participants which were at least 6 months older 

than the youngest participant or 6 months younger than the oldest participant, we restricted the 

analyses of this section to participants that were between four and 16 years old (n = 3309). As a 

first step, we calculated the differences between the z-scores of the two versions of each method 

for all participants, that is, we compared Method 1a to Method 1b (= Δz-score1), Method 2a to 

Method 2b (= Δz-score2), Method 3a to Method 3b (= Δz-score3) and finally Method 4a to 

Method 4b (= Δz-score4). Note that the variance of each Δz-score ‒ not the mean, which was 

supposed to approach zero due to the rank based normalization ‒ indicates how strongly the two 

versions of one method deviate from each other and therefore how prone each method is to 

changes in the span of the age bracket. We compared the variances of the four Δz-scores 
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inferentially (procedure according to Kristof, 1981) using the Bonferroni correction to adjust for 

multiple comparisons. The significance level was set to α = 5 %.  

As little differences between the two variations of one method would not guarantee a 

good quality of the method per se, we additionally analyzed the pattern of intercorrelations 

between the different methods. To this purpose, we calculated all pairwise Pearson correlation 

coefficients between the different versions of all methods (i.e., 1a, 1b, 2a, 2b, ….4b). 

Subsequently, we determined the average correlation between two methods (i.e., 1, 2, 3, and 4) 

according to the method of Olkin and Pratt (1958), which is less biased than the more common 

Fisher’s z-transformation (cf. Eid, Gollwitzer, & Schmitt, 2010, p. 545). For example, the 

average correlation between Method 1 and Method 2 was calculated out of the four correlations 

r1a, 2a, r1a, 2b, r1b, 2a, and r1b, 2b. Finally, we compared the six resulting average correlation 

coefficients to each other inferentially (procedure according to Eid et al., 2010, p. 548f). Again 

we used the Bonferroni correction and a significance level of α = 5 %.  

Results and discussion. 

As expected, the means of the Δz-scores approached zero. None of them exceeded 0.01 z-

scores. As far as the variances were concerned, the variation of the age span of each normative 

group had the greatest impact on Method 1. The variance of Δz-score1 amounted to S2 = 0.043, 

which means that the standard deviation spanned about one third of the size of the 95%-

confidence interval of a test result. The variance of Δz-score2 was S2 = 0.009, which was 

significantly lower than that of Δz-score1, t(3307) = 50.13, padj < .001. This result suggests that 

the age-related norming error of Method 1 considerably contributed to the differences between 

Method 1a and 1b. However, as predicted, the impact of varying the age span of the normative 

age brackets was still substantially reduced when applying non-parametric continuous norming. 
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Method 3 (S2 = 1.94 * 10-4) as well as Method 4 (S2 = 9.20 * 10-4) showed significantly lower 

standard deviations of the corresponding Δz-scores than Method 2, t(3307) = 192.38, padj < .001 

for Method 3 and t(3307) = 81.29, padj < .001 for Method 4. Note that the standard deviation of 

Δz-score1 was approximately fifteen times as high as that of Δz-score3, indicating that Method 3 

delivers results that are much more independent of the age span and sample size than those of 

Method 1.  

 Table 2 lists the intercorrelations between the z-scores gained with the different norming 

methods. First of all, it must be stated that all correlations are extremely high (> .97). This shows 

that none of the methods delivers results that strongly deviate from the results of the other 

methods. Nevertheless, even high correlations between two methods can entail a large proportion 

of cases with significantly different test results on the individual level. In the electronic support 

material S2 we demonstrate a case where two different methods correlate as high as r = .9836, 

yet 4.4 % of the cases show significantly deviating test results.  

The test results gained with Method 3 and 4 showed the highest average correlation with 

r = .9985. The correlation was significantly higher than that between Method 3 and Method 2, z 

= 53.87, padj < .001 and also significantly higher than that between Method 3 and Method 1, z = 

65.66, padj < .001. Again, it can be clearly seen that the different versions of the non-parametric 

continuous norming procedure deliver very similar and stable test results. One could expect, at 

first glance, that the two empirical methods also deliver results that are very similar to each other 

and less similar to the results of the continuous norming models. However, this is not the case. 

Instead, the test results gained with Method 2 correlate significantly lower with the results of 

Method 1 than with those of Method 3, z = -2.98, padj < .05. The correlation between Method 2 
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and Method 4 is also higher than that between Method 2 and Method 1, however, the difference 

failed to reach significance, z = -1.04.  

In summary, the data indicate that Method 1 ‒ probably the most common one used for 

generating test norms ‒ is the method that is most prone to changes in the span of the age 

brackets and the sample size and in this respect delivers the most unreliable results. Moreover, it 

is the method that produces results which are most dissimilar to the ones of the other three 

methods. By contrast, the norms produced by non-parametric continuous norming are negligibly 

affected by changing the method to estimate l. The results are stable. Moreover, they are very 

similar to another method, namely Method 2, which also prevents at least some forms of age-

related norming error. However, there are several advantages of non-parametric continuous 

norming as compared to Method 2. First of all, Method 2 can only be applied with the help of 

special software (in our case, it was self-written software), whereas non-parametric continuous 

norming can be applied with standard statistical software such as R, SPSS or STATISTICA. 

Second, non-parametric continuous norming uses information from the whole sample to derive 

each single norm score. This is not the case for Method 2. Therefore, although Method 2 is also 

able to produce continuous norms, the results are more heavily affected by changes in the span of 

the age bracket respectively the sample size. 

Example 2 – Cross-Validation 

So far in this paper, we have analyzed how robustly empirical data can be modeled with 

our non-parametric continuous norming technique and how the model can help to avoid age-

related norming error. The next step is to test whether the model not only matches a specific 

sample drawn from a certain population but also fits a new sample from the same population. 

Moreover, we check whether norm values derived with non-parametric continuous norming fit a 
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new sample better than do norm values derived from the old sample with a conventional norming 

technique. To this purpose, we reanalyzed data from a large standardization sample of a reading 

comprehension test based on grade norms (W. Lenhard & Schneider, 2006). 

Data 

The standardization data was collected during the years 2004 and 2005 and comprised a 

representative sample of 3610 children from the beginning of Grade 2 to the beginning of Grade 

5. For every grade, data was collected at two equidistant points of the school year, namely, at the 

beginning and in the middle. In this paper, we only present the data of one subtest, namely the 

sentence comprehension subtest. The maximum score in this subtest is 30 points. For every grade 

level (beginning of Grade 2, middle of Grade 2, beginning of Grade 3, … beginning of Grade 5) 

we randomly drew two non-overlapping samples including n = 100 children out of the whole 

standardization sample, resulting in two different cross-validation groups with N = 700 children 

each. The two groups are called Cross-Validation Group 1 and Cross-Validation Group 2 in the 

following.  

Data Analysis 

The location l of each participant was estimated based on the empirical raw score 

distribution within each grade level of his or her own cross-validation group using the ranking 

procedure according to Blom (1958) and subsequent rank-based inverse normal transformation 

into T-scores (M = 50, SD = 10). As in the previous analyses, these T-scores are called empirical 

T-scores in the following. The regression analysis was performed for each cross-validation group 

separately with k = 5 and the raw score serving as the dependent variable. Again, the inclusion of 

predictors was carried out until the inclusion of another predictor did not lead to significant 
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changes (p < .05) of F for the entire model. We thus established a Taylor polynomial for each 

cross-validation group as described previously in the step-by-step guide. 

As a next step, three additional T-scores were assigned to each participant. First, we 

calculated the T-scores for each participant based on the continuous norming models resulting 

from Cross-Validation Group 1 (Tmod1) and Cross-Validation Group 2 (Tmod2). Second, if 

possible, we also determined another empirical T-score for each participant, namely, the T-score 

which was related to his or her raw score, according to the raw score distribution in the cross-

validation group he or she did not belong to. T-scores based on the raw score distribution of 

Cross-Validation Group 1 are called Temp1, while T-scores based on the raw score distribution of 

Cross-Validation Group 2 are called Temp2. Subsequently, we calculated the difference between 

both empirical T-scores (= ΔTemp) and both modeled T-scores (= ΔTmod). The variances of these 

differences were compared inferentially (procedure according to Kristof, 1981). Furthermore, we 

computed correlations between the four different T-scores separately for each validation group 

and also compared them inferentially (procedure according to Eid et al., 2010, p. 548f). Again 

we used a Bonferroni correction and a significance level (α = .05).  

Results and Discussion 

Figure 4 displays both the empirical results of the different cross-validation groups and 

the according continuous norming models. As can be seen from the figure, the model curves 

match each other fairly well and both display a smooth increase from Grade 2 to Grade 5. By 

contrast, the empirical data display serrated curves with negative slopes at some occasions (for 

example for Group 1, T-score 55 from Grade 3 to Grade 3.5). The quantitative analysis 

confirmed that the discrepancies between the two empirical T-scores (ΔTemp: S2 = 3.50) were 

larger than those between the modelled T-scores (ΔTmod: S2 = 0.81), t(1350) = 30.97, p < .001. 
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This result again suggests that non-parametric continuous norming delivers more homogenous 

and stable results than conventional discrete norming.  

The correlations between the different T-scores are displayed in Table 3. According to 

this analysis Tmod1 and Tmod2 share about 99.2 % of variance in each group, indicating that both 

models deliver almost identical T-scores. In both groups the correlation between Tmod1 and Tmod2 

is significantly higher than that between Temp1 and Temp2, z = 15.32, p < .001 for cross-validation 

group 1 and z = 14.95, p < .001 for Cross-Validation Group 2. More importantly, in Cross-

Validation Group 1 Temp1 correlates significantly higher with Tmod2 than with Temp2, z = 4.79, p < 

.001. Accordingly, in Cross-Validation Group 2 Temp2 correlates significantly higher with Tmod1 

than with Temp1, z = 2.68, p = .004. These results indicate that the models are better predictors of 

the raw score distribution of the other cross-validation group than are the raw score distributions 

of the own group.  

Discussion and Summary 

In this paper we presented a new, distribution free approach for the calculation of 

continuous norms based on Taylor polynomials. The key findings – now briefly recapitulated – 

suggest that the current approach may provide a continuous solution to the norming problem. 

Key Findings 

First, it appears that the validity of conventionally established norms strongly depends on 

the age span of the normative age brackets, which however was not the case for norms generated 

with non-parametric continuous norming. Moreover, there is the practical advantage that with 

non-parametric continuous norming robust norms can be produced with smaller sample sizes 

(also cf. Zhu & Chen, 2011). Consider for example the test introduced in Example 1. We built 15 
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age brackets with approximately 240 cases each and retrieved norm tables for 51 distinct age 

brackets out of these. Conventional non-continuous norming procedures would afford 51 x 240 

cases (= 12,570 cases) and still would not attain the same precision without applying further 

smoothing techniques. In some cases, the use of continuous norming might even facilitate the 

collection of standardization data. For example, many psychometric tests of school performance 

utilize grade norms that represent the typical performance at the end of the school year or at the 

end of a semester or trimester. To this purpose, standardization data have to be collected within a 

small time frame, which is often logistically difficult. With continuous norming, by contrast, 

standardization data can be collected the whole year round. 

Second, we showed that our specific non-parametric continuous norming procedure 

delivers results that can predict the raw score distribution of a new sample more precisely than 

does the original raw score distribution. Furthermore, it avoids inadvertent effects like negative 

slopes for specific combinations of person location and age or grade in developmental tests. Test 

developers using conventional norming procedures might smooth out such effects by hand. 

However, there are neither precise rules as to when such effects are smoothed out nor how they 

are smoothed out in conventional norming. Moreover, given the difficulty of finding any test 

manuals describing the smoothing procedures underlying test norms, it appears that conventional 

norming lacks transparent and replicable procedures. 

Third, we demonstrated that our approach not only shows high data fit but can also be 

used for moderate extrapolation to an age or person location not included in the standardization 

sample. Although extrapolation to person locations not included in the standardization sample is 

frequently applied in psychometric tests, the techniques used to this end are poor at best. For 

example, in the widely used Children Behavior Checklist (Achenbach & Rescorla, 2001) the 
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authors established a simple linear function between raw scores and T-scores for extreme test 

results, thereby using arbitrary minimum and maximum T-scores of 20 and 80 for the minimum 

and maximum raw scores. 

Finally and most important, while the previous advantages also hold true for parametric 

continuous norming approaches, their drawback is to require assumptions on the distribution of 

the raw data, for example normality and in some cases also homogeneity of variance across all 

levels of the explanatory variables. These drawbacks are overcome by our new non-parametric 

approach for which skewness or heterogeneity of variance play no role. In the presented 

example, we could even model a fairly pronounced ceiling effect at high age. Moreover, in 

analyses not presented in this paper, the non-parametric continuous norming procedure was 

successfully applied to scales with even larger ceiling effects (e.g., the text comprehension 

subscale of the ELFE 1-6; W. Lenhard & Schneider, 2006). 

Limitations and Practical Advice for Continuous Norming 

It should be kept in mind that non-parametric continuous norming is a method that is not 

necessarily restricted to age or grade norms and performance tests. Performance data aside, it is 

also possible to use the method for the measurement of personality traits such as neuroticism or 

extraversion. Moreover, it is possible to include other covariates than age or grade. In principle, 

one could use any variable that covaries with the test scores (e.g., gender, ethnic origin, social 

background). Theoretically, it is even possible to include more than one explanatory variable, 

thereby generalizing the method to an n-dimensional approach. Critically, when using a Taylor 

polynomial with corresponding powers plus all interactions of powers of the independent 

variables, the number of predictors in the regression analysis quickly increases to an 

unmanageable quantity. Based on our experience with norming datasets additional to those 
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reported in this article, the inclusion of a second explanatory variable works best when this 

additional variable is dichotomous instead of continuous (e.g., gender). However, in this case, 

model fit should be checked thoroughly– especially at the extreme ends of the distributions.  

Additionally, non-parametric continuous norming is also not restricted to the use of raw 

scores based on classical test theory. As any continuous function can be modelled with Taylor 

polynomials, our approach can equivalently be applied to latent trait scores. 

Despite the advantages of non-parametric continuous norming, there are also some 

limitations and questions that need addressing the first of which concerns data fit. On the one 

hand, a model should of course map the empirical data accurately. On the other hand, if the 

model is too close to the empirical data, it not only reproduces the true population parameters but 

also some of the errors inherent in standardization data with limited sample size or missing 

representativeness. Associated with this problem is the question of which method of multiple 

regression should be used. We applied multiple regression with stepwise selection of 

independent variables (= stepwise regression). The statistical procedure a posteriori determines 

those terms of the power series that uniquely contribute significant portions of variance. It is 

completely data driven and models the empirical data very closely. Some authors (Cohen, 

Cohen, West, & Aiken, 2003, pp. 161) have claimed that stepwise regression might lead to a data 

overfit. Unfortunately, a quantitative criterion indicating whether there is a data overfit does not 

exist. In our example, other methods (e.g., forward or backward selection of variables) did not 

yield appreciably different results. Therefore, stepwise regression seems to be one out of several 

different appropriate methods of multiple regression for performing non-parametric continuous 

norming. The cross-validation study further shows that the regression parameters and the T-

values based on raw scores from two independent norming samples are fairly identical.  
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Another problem connected with multiple regression in general is the intercorrelation of 

the independent variables, which can severely hamper the interpretation of regression analyses. 

Moreover, Cohen et al. (2003, p. 162) suggest to use dataset sizes with at least 40 times as many 

cases as the number of independent variables in the regression analysis in order to retrieve an 

invariant sequence of variables. For example, for two independent variables (e.g., person 

location and age) and k = 5 (= 35 independent variables in the multiple regression) the total 

sample size would be at least 1.400. However, these problems do not apply to our continuous 

norming approach, as we neither attempt to interpret the independent variables in terms of an 

explanatory theory nor require invariant sequences of the independent variables. In our 

experience, still lower numbers yet can suffice. For instances, the cross validation of Example 2 

yielded excellent results for as few as 100 cases per age group (i.e., only 20 times as many cases 

as the number of independent variables in the regression analysis). Furthermore, in many cases a 

lower smoothing parameter (k = 3 or k = 4) will be sufficient (as e.g., anonymous authors, in 

press).   

Another problem is extrapolation. As already described, extrapolation to person locations 

not included in the standardization sample is a somewhat widespread practice. For example, the 

standardization sample of the KABCTM – II (Kaufman & Kaufman, 2004) comprises N = 3025 

children. The standard scores (M = 100, SD = 15) indicated in the KABCTM – II range from 40 to 

160. However, there is only a 31% chance that a single person out of 3025 randomly chosen 

participants has a standard score of 155 or above. The chance that none of the children has a 

standard score of 155 or above is more than twice as high (p = 69 %). Although non-parametric 

continuous norming delivers values that are at least as plausible as the ones gained with other 

methods like, for example, Box-Cox-Transformations, the functional relation between raw scores 
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and norm scores might not apply to extreme person locations. For this reason, we argue that 

extrapolation to extreme person locations should generally be used very cautiously. In most 

cases, there is not even a reason to differentiate with such high precision. For example, in most 

cases, a child with a measured IQ of 145 would not be treated differently from a child with a 

measured IQ of 160. If extrapolation is nevertheless used in the construction of test norms, it 

should be more explicitly stated and described in the norm tables and manuals.  

Interestingly, extrapolation to age ranges not included in the standardization sample is 

rarely seen in psychometric tests, although almost the same pros and cons hold true as for 

extrapolation to extreme person locations. As can be seen from Figure 2, non-parametric 

continuous norming does not always deliver plausible values for this kind of extrapolation. We 

therefore recommend that the age range of standardization samples should be slightly wider than 

the age range reported in the statistical manual of the according tests. For example, in the 

vocabulary test of Example 1 the age range of the standardization sample was 2.59 to 17.99 

years, while the test manual only reports norm scores for children from 3.0 years to 17.0 years. 

The norm scores of the upper and lower age brackets could then be determined more reliably. 

Despite the aforementioned problems, non-parametric continuous norming seems to be a 

procedure, which can not only be easily applied with standard statistical software, but also 

delivers stable and reliable norms. Therefore, we regard non-parametric continuous norming as a 

useful tool that can improve the quality of psychometric tests. It is a task of future work to 

further explore its limitations and benefits.  
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Figure captions 

Figure 1. Illustration of parametric continuous norming as proposed by Gorsuch (1983, as cited 

in Zachary & Gorsuch, 1985). 

 

Figure 2. Results of the non-parametric continuous norming procedure for different smoothing 

parameters k. The marks depict age-dependent raw scores as determined by rank-based inverse 

normal transformation per age bracket while the lines illustrate the resulting Taylor polynomial 

for 5 different z-scores with smoothing parameter k ranging from 3 (upper left chart) to 6 (lower 

right chart). 

 

Figure 3. Extrapolation to very high or very low z-scores for three different smoothing 

parameters k at age 16. Instead of z-scores the y-axis displays the according probability densities 

in order that the presented curves can be more easily compared to a normal curve. The grey area 

corresponds to z-scores below -2.0 or above 2.0. 

 

Figure 4. Relation between raw score, location (T-score) and grade in a reading comprehension 

subtest for two different cross-validation groups. Fine serrated lines with marks display the 

empirical results (filled marks for Group 1 and open marks for Group 2). Smooth lines display 

the models resulting from non-parametric continuous norming (dashed line for Model 2). 
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Caption of the Supplemental Material 

 

Supplemental Material S1.  Mathematical derivation of the proposed non-parametric norming 

procedure with Taylor polynomials.  

 

Supplemental Material S2.  Analysis of the age related norming error when assessing 

performances of examinees whose age differs from the mean age of the according norming group 

in conventional norming approaches. This error can be minimized by continuous norming 

procedures.  
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Table 1 

Coefficients of determination for different smoothing parameters k 

k R R2 adj. R2 

1 .95 .89 .89 
2 .99 .98 .98 

≥ 3 .99 .99 .99 
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Table 2 

Intercorrelations between z-scores based on different methods used to estimate l 

  Method 1 Method 2 Method 3 Method 4 
1b 2a 2b 3a 3b 4a 4b 

E
m

pi
ri

ca
l 

Method 1: Common Age Brackets 
(“traditional approach”)  .9889 .9848 .9844 

age span: 1 year 1a .9782 .9869 .9830 .9836 .9837 .9832 .9835 
age span: 6 months 1b  .9930 .9927 .9860 .9860 .9852 .9856 

      
Method 2: Individual Age 
Brackets (sliding window)    .9899 .9893 

age span: 1 year 2a   .9953 .9923 .9924 .9915 .9919 
age span: 6 months 2b    .9875 .9875 .9865 .9871 

k5
-M

od
el

 
(C

on
tin

ou
s N

or
m

s)
 Method 3: Common Age Brackets      .9985 

age span: 1 year 3a     .9999 .9980 .9990 
age span: 6 months 3b      .9980 .9989 

         
Method 4: Individual Age 
Brackets (sliding window)        

age span: 1 year 4a       .9995 
age span: 6 months 4b        

Note: The correlations printed in bold italics indicate average correlations determined according to the method of Olkin 

and Pratt (1958). 
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Table 3 

Intercorrelations between T-scores based on two different cross-validation groups 

C
ro

ss
-v

al
id

at
io

n 
G

ro
up

 1
  n = 678 2. 3. 4. 

E
m

pi
ri

ca
l 1. Cross-Validation Group 1 .9795 .9868 .9849 

2. Cross-Validation Group 2   .9820 .9843 

k5
-M

od
el

 3. Cross-Validation Group 1     .9961 

4. Cross-Validation Group 2       

      

C
ro

ss
-v
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id

at
io

n 
G
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up

 2
  n = 674 2. 3. 4. 

E
m

pi
ri

ca
l 1. Cross-Validation Group 1 .9802 .9880 .9858 

2. Cross-Validation Group 2   .9830 .9848 

k5
-M

od
el

 

3. Cross-Validation Group 1     .9961 

4. Cross-Validation Group 2       
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Mathematical Derivation 

In the presented continuous norming approach the raw score r is modeled as a 

continuous function of person location l (i.e., percentile or normalized standard score) and an 

explanatory variable a (e.g., age or grade): 

     .     (1) 

If f is continuous and has derivatives of all orders it can be written as Taylor series 

centered at point P(l0, a0) 

      ,  (2) 

where s! and t! denote the factorials of s and t and  denotes the sth partial 

derivative of f with respect to l and the tth partial derivative of f with respect to a evaluated at 

point P(l0, a0) (cf. Bronstein & Semendjajew, 1989, p. 370f). As a Taylor series with finite 

convergence radius will approximate the function f most accurately the closer the proximity to 

its center point P(l0, a0), the optimal center point should be a point that falls within the range 

of the collected data with average l and a. However, there is no need to determine this point 

explicitly. For any point P(l0, a0), the partial derivatives of the function simplify to constants. 

Furthermore, the term  can be written as polynomial of l of degree s (i.e., c0 + c1l + 

c2l2 + c3l3 + … + csls, with constants c0, c1, c2, …cs) and the term  can equivalently be 

written as polynomial of a of degree t. If these two polynomials are multiplied, the Taylor 

series simplifies to the following power series: 

        ,     (3) 

where cst simply denotes constants. Therefore, if the Taylor series converges and has a 

convergence radius of sufficient size, r can be expressed as an infinite sum of powers of l and 
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a. As the summands of the convergent infinite sum (3) diminish quickly with growing powers 

of l and a (i.e., growing s and t), summands with a large sum of s and t can be neglected to 

approximate r. Therefore, the correspondent Taylor polynomial  

         ,     (4) 

is a suitable estimation of r, where the integer k denotes a smoothing parameter.  

 

 

Reference: 

Bronstein, I., & Semendjajew, K. (1989). Taschenbuch der Mathematik (24th ed.). Frankfurt 

a. M., Germany: Harri Deutsch. 
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Reduction of Age-Related Norming Error 

As described in the introduction, one source of error in conventional psychometric tests stems from 

differences between the age of an examinee and the average age of the corresponding normative age 

bracket. For example, an examinee whose age is at the lower edge of its age bracket is only compared 

to older children. Therefore his or her performance might be underrated. The opposite is true for 

children at the upper edge of the age bracket. Consequently, discrepancies between a conventionally 

established discrete norming procedure (e.g., rank-based inverse normal transformation per age 

bracket) and a norm score based on a continuous norming procedure should increase with the 

difference between the age of an examinee and the average age of the corresponding normative age 

bracket. Note that these differences lead to norming errors only in conventional norming procedures, 

whereas such norming errors can be completely avoided with continuous norming procedures. In the 

following, we will use the best fitting model of the prior section (k5) in order to assess the size of this 

error.  

Data analysis    

As the k5-Model appeared superior in the previous analyses, it was retained in the subsequent 

analyses. To analyze the size of the age-dependent norming error that occurs with conventional 

norming procedures in our sample, we first calculated a z-score for each participant in the 

standardization sample based on the k5-Model (zk5). This was done using Step 6 as described in the 

implementation section together with the k5-Model. Subsequently, we calculated both the difference 

between zemp and zk5 (Δzemp_k5) and the difference between the exact age of the participant and the 

average age of the corresponding normative age bracket (Δage). The correlation between both 

difference values quantifies the age-dependent error variance of the conventional norming procedure, 

which is eliminated by the continuous norming approach. To be able to further analyze the difference 

between conventional discrete norming and non-parametric continuous norming, we calculated an 

additional z-score zk5Øage for each participant on the basis of the k5-Model. However, this time we used 

the average age of each participant’s normative age bracket instead of his or her exact age. The 



generated z-scores zk5Øage serve as a fictive sample with Δage = 0. Therefore, the difference between zemp 

and zk5Øage (Δzemp_k5Øage) quantifies the difference between the k5-Model and the empirical data that 

cannot be explained by differences between the exact age of the participants and the average age of 

their corresponding normative age brackets.  

Results and discussion 

Figure S1 illustrates the frequency distributions of Δzemp_k5 and Δzemp_k5Øage. The correlation between 

Δzemp_k5 and Δage was r = .704 (p < .001), which indicates that the difference between the age of a 

participant and the average age of his or her corresponding normative age bracket explained almost 

half of the variance of Δzemp_k5 (r2 = .496). Δzemp_k5 had a mean of M = -0.004 and a standard deviation 

of SD = 0.186 z-scores. In 155 cases (4.4 %) zk5 lay outside of the 95% confidence interval of zemp. The 

standard deviation of Δzemp_k5Øage added up to SD = 0.114 z-scores (M = -.003), which was significantly 

smaller than that of Δzemp_k5, t(3553) = 36.33, p < .001. In only 54 cases (= 1.5 %) zk5 Øage lay outside of 

the 95% confidence interval of zemp, which means that the number of deviating test results was reduced 

to about one third. 

The presented data strongly suggest that in our example particularly high differences between z-scores 

established by conventional discrete norming and z-scores based on non-parametric continuous 

norming can be mainly accounted for by differences between the age of a participant and the average 

age of his or her corresponding normative age bracket. This means that our non-parametric continuous 

norming approach significantly reduces age-related norming errors. The effect might not always be as 

strong as was observed in our example. For instance, we used fairly large age brackets and clearly, the 

advantage for continuous norming would shrink with smaller ones. On the other hand, smaller age 

brackets would also mean fewer participants per age bracket, which in turn would enlarge the norming 

error made by conventional norming especially for extreme z-scores. One could also argue that any 

psychometrically skilled test examiner would not simply use the tabulated norm data in the test 

manual if an examinee’s age was at the border between two age brackets. Instead he or she would 

probably interpolate between two tabulated data points. In practice some examiners certainly 

interpolate while others do not, which reduces the scoring objectivity of the test. Moreover, it is not 



clear in which cases interpolation should be used and if it is applied correctly by any examiner (as it is 

rarely described in test manuals). In our opinion, interpolation would be one possible solution to the 

problem of age-related norming error but non-parametric continuous norming would be a better one. 

 

Figure S1. Frequency distribution of differences between empirical z-scores and z-scores based on the 

k5-Model. The hatched bars represent differences between empirical data and the model that cannot be 

accounted for by differences between the exact age of a participant and the average age of the 

corresponding normative age bracket. 
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