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Most reading time studies using naturalistic texts yield data sets characterized by a
multilevel structure: Sentences (sentence level) are nested within persons (person
level). In contrast to analysis of variance and multiple regression techniques, hierar-
chical linear models take the multilevel structure of reading time data into account.
They provide methods to estimate variance components and to model the influence
of predictor variables on different levels as well as cross-level interactions between
these predictors. This article gives a brief introduction to the method and proposes
practical guidelines for its application to reading time data, including a discussion of
power issues and the scaling of predictor variables. The basic principles of model
building and hypothesis testing are illustrated with original data from a reading time
study with naturalistic texts.

In research on text comprehension, reading times have been established as a use-
ful and unobtrusive online measure to study resource allocation during reading.
There are eye-tracking methods and the inexpensive, easy-to-use moving win-
dow method for recording such data (Haberlandt, 1994). For further statistical
analysis, most researchers use analysis of variance (ANOVA) or multiple regres-
sion (MR) techniques. Neither of the two methods, however, represents an opti-
mal way to deal with reading times because they cannot handle the typical multi-
level structure of such data: Whenever a study requires a number of participants
to read several sentences and reading times are recorded for each sentence, the
resulting data set will have at least two levels, a person level and a sentence
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level. One important implication of this two-level structure is well known to
psycholinguists since the seminal paper by Clark (1973). In reading time experi-
ments, not only participants but also linguistic stimuli such as words or sen-
tences are randomly sampled from larger populations. For this reason, inferential
statistics must be based on two sources of error variance simultaneously if re-
searchers wish to generalize their results across the particular stimuli used in a
given study. However, the techniques of parameter estimation commonly used in
ANOVA and MR are not designed to handle two sources of error variance at the
same time.

Hierarchical linear models (Raudenbush & Bryk, 2002), also known as ran-
dom coefficient models (Kreft & de Leeuw, 1998), variance component models
(Longford, 1989), or multilevel random coefficient models (Nezlek, 2001, 2003),
take the multilevel structure of reading time data into account. Hierarchical lin-
ear models have originally been developed in educational and social research
where observations are often made on different levels simultaneously (e.g., stu-
dents, classes, schools). Up to now, this type of method has not routinely been
applied to reading time data despite its advantages: It is very well suited for typi-
cal research questions in the field, it provides a straightforward solution to meth-
odological problems associated with the more traditional methods, and it offers
new perspectives for research. A unique feature of hierarchical linear models is
the possibility of estimating interaction effects of predictor variables located on
different levels directly, for example interactions between sentence level and per-
son level predictors.

The aim of this article is to give a short introduction to the application of hierar-
chical linear models to reading time data. A high emphasis is put on practical is-
sues that are likely to be of primary interest to researchers in the field of reading
and text comprehension. As a consequence, more technical aspects like procedures
of parameter estimation are touched only briefly (for a more thorough coverage,
see Goldstein, 2003; Raudenbush & Bryk, 2002).

This article starts with an explanation why and in which respects reading time
data are structured by multiple levels. The second section then discusses method-
ological problems in the application of ANOVA and MR techniques to reading
times characterized by a nested structure. Subsequently an outline of the principles
of hierarchical linear models is given for a simple multilevel problem comprising
of a sentence and a person level. Sample data from a reading time study are used to
illustrate these principles and to demonstrate the advantages of hierarchical linear
models compared to the more traditional models. The major part of the article cov-
ers basic issues of multilevel modeling. With a focus on reading time research,
practical guidelines for model building and hypothesis testing are provided. Spe-
cial emphasis is put on the issues of power of significance tests and scaling of pre-
dictor variables.
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THE MULTILEVEL STRUCTURE
OF READING TIME DATA

The main reason for applying hierarchical linear models to reading times is the
typical multilevel structure of the data. In studies using naturalistic text material
(Graesser, Magliano, & Haberlandt, 1994) as well as in experiments using short
texts made up by the experimenter, participants read more than one sentence.
Therefore, a simple two-level structure comprising a person level and a sentence
level can be found in almost any reading time study. If several participants read
several sentences and reading times are measured sentence by sentence, the vari-
ance in the sentence reading times will invariably have two sources: One propor-
tion of variance will be due to differences between persons (variance on the person
level), and a second proportion will be due to differences between sentences (vari-
ance on the sentence level). These two sources of variance will be present irrespec-
tive of the theoretical focus of a given study, be it set on predictors on the sentence
or the person level, or on both levels simultaneously. Examples from research on
text comprehension are of course abundant. In many experiments on inference pro-
cesses, sentence characteristics are manipulated to investigate their influence on
reading times (e.g., inference scores or causal relatedness, cf. Singer, 1994). The
correlational approach of the three-pronged method employs think-aloud proce-
dures to determine the probabilities for sentences to elicit specific inferences, and
the results are used to predict sentence reading times (Magliano & Graesser, 1991).
Predictors on the person level may be categorical variables such as experimentally
manipulated factors (e.g., reading goals) as well as continuous variables depicting
individual differences (e.g., reading skills). A number of studies entail compari-
sons of groups of readers (e.g., slow vs. fast readers, good vs. poor readers, youn-
ger vs. older readers; readers with different reading expectations, goals, or strate-
gies) regarding how strongly sentence characteristics (e.g., microstructural vs.
macrostructural features) affect reading times (e.g., Bisanz, Das, Varnhagen &
Henderson, 1992; Graesser, Hoffman, & Clark, 1980; Haberlandt & Graesser,
1985; Long & Chong, 2001; Magliano, Trabasso, & Graesser, 1999; Zwaan,
1994). In terms of multilevel modeling, the focus of these studies is on cross-level
interactions of predictors on the person and on the sentence level.

In text comprehension research, the stimulus materials themselves are often
made up of different levels such as sentence, paragraph, and text. On each of these
levels, there are various variables that might possibly influence reading times. In
addition, the relationship between similar constructs may differ radically depend-
ing on the level of analysis (see Nezlek, 2001, for an illustration). The impact of
syntactic complexity on reading times, for example, is probably much stronger
when it is investigated on the sentence level (syntactic complexity and sentence
reading times) compared to the text level (mean syntactic complexity and aggre-
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gated sentence reading times) because sentence-to-sentence variability of syntac-
tic complexity contributes to text difficulty (Wisher, 1976). Generally stated, any
reading time study warrants substantial conclusions only relative to one or more
particular level(s) of analysis. If researchers disregard this principle, they run the
risk to commit an ecological fallacy (Robinson, 1950).

Even if an investigator’s theoretical perspective is restricted to one level,
sources of variance on other levels will still be present and therefore must not be ig-
nored. Accordingly, hierarchical linear models are often preferable to statistical
methods that neglect the nested structure of reading time data.

WHAT IS WRONG WITH ANOVA
AND MULTIPLE REGRESSION?

Typically, reading time studies employ ANOVA or MR techniques to investigate
the impact of person- or sentence-level factors on the allocation of processing re-
sources. Due to the fact that both types of methods are designed for single-level
problems, the analysis of multilevel data such as reading times by ANOVA or MR
is associated with serious problems.

ANOVA in its various forms is most prevalent in studies following an experi-
mental approach. In reading time experiments, person-level characteristics such as
reading goals, tasks, or reader expectations are usually varied as between-subjects
variables, whereas characteristics of sentences, texts, or paragraphs are included as
within-subjects variables. As a rule, dependent variables consist of aggregated
measures. The rationale for using aggregated measures is to enhance reliability of
dependent variables by eliminating variance caused by attributes specific to indi-
vidual text segments (e.g., sentence length, passage difficulty, syntactic complex-
ity). However, using person-level aggregates as dependent variables in ANOVA
may be problematic because it results in an unnecessary loss of information and
potential threats to the validity of the results. First of all, a large proportion of the
variance between individual sentences may in principle be explained by easily
available sentence attributes. In addition, interaction effects between attributes on
the sentence level and attributes on the person level may exist. After aggregation,
such cross-level interactions will remain unnoticed and the validity of person-level
effects found in ANOVA models has to be questioned. Last but not least, as Clark
(1973) pointed out (following a suggestion by Coleman, 1964), even if variance
components due to sentences are regarded as pure error variance, researchers often
commit a statistical fallacy if they exclude them from further analysis. To general-
ize effects across participants as well as sentences, hypothesis tests must be based
on persons and sentences as sources of error; that is, also the effects of sentences
must be treated as random rather than fixed.
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In ANOVA, there is no way to estimate an error term that includes both sources
simultaneously. The so called quasi F ratio F’ proposed by Winer (1971) is avail-
able as an approximate test statistic for designs with subjects and sentences as ran-
dom effects, but in many cases, for example in data sets with missing data, compu-
tation of F’ is difficult or impossible. As a consequence, it has become customary
in psycholinguistic papers to report two F tests, one based on persons as the source
of error (F1 based on the treatments by subjects interaction sums of squares) and
one based on sentences as the source of error (F2 based on the items within treat-
ments sums of squares). Although the inflation of type-I-error probability is lower
when two separate F tests are conducted, this procedure may still lead to false posi-
tive decisions because both F tests are biased when persons as well as sentences
are sources of error (Raaijmakers, Schrijnemakers, & Gremmen, 1999). The less
common alternative proposed by Clark (1973) is to base hypothesis tests on a sta-
tistic called minF’ which is derived from F1 and F2. This procedure inflates
type-II-error probability because minF’ represents the lower bound of F’ and may
thus underestimate F’. In sum, even if the variance due to sentences is purely un-
systematic, the hypothesis tests provided by ANOVA are not well designed to han-
dle the multilevel structure of reading times. The common procedures that are used
as workarounds yield either too progressive tests (inflating type-I-error probabil-
ity) or too conservative tests (inflating type-II-error probability).

MR techniques have been introduced to reading time research to conduct more
fine-grained analyses on the sentence level (cf. Graesser & Riha, 1984;
Haberlandt, 1984). Nevertheless, MR models for sentence reading times face diffi-
culties complementary to those in ANOVA, all of which reduce to the problem that
sentence reading times come from different persons. Four methods to minimize
the undesired effects of this problem have been proposed.

Sentence Reading Times as Independent Observations

One simple approach is to enter all sentence reading times (be they from the same
or from different persons) into the regression model as independent observations.
Some researchers following this approach z standardize the measures for each per-
son to eliminate between-person variance. Regardless of the issue of standardiza-
tion, treating all sentence reading times as independent observations amounts to
ignoring the person level and may thus lead to completely erroneous conclusions.
The strength of the association of a sentence-level predictor such as causal related-
ness with reading times, for example, might vary between persons and depend on
person characteristics such as the amount of prior knowledge. If cross-level inter-
actions of sentence- and person-level predictors are present in the data set, they
cannot be detected. Even worse, the MR model will be misspecified, and parame-
ter estimates will be biased. Cronbach and Webb (1975) were the first to give a sys-
tematic analysis of this problem for the similar case of students nested within
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classes. In addition to biased estimates in the case of cross-level interactions, the
traditional MR approach suffers from methodological deficiencies because it fails
to separate variance components pertaining to different levels. Sentence reading
times belonging to the same person, for example, usually show higher correlations
than reading times from different persons, which means that the intraclass correla-
tion of sentence reading times will be different from zero. One likely consequence
of a high intraclass correlation is a violation of the homoscedasticity assumption,
which is a precondition for conducting significance tests in MR models with ordi-
nary least squares (OLS) estimates (e.g., Cohen, Cohen, West, & Aiken, 2003,
chap. 4). In linear models with OLS estimates, a high intraclass correlation leads to
an underestimation of the standard errors on which significance tests for individual
parameters are based. Therefore, the actual alpha level will often be inflated com-
pared to the nominal alpha level if the analysis neglects dependencies of reading
times belonging to the same person (for the ANOVA case, see Barcikowski, 1981;
for examples, see Kreft & de Leeuw, 1998).

Aggregation Across Persons

In a second, complementary approach, reading times are aggregated across per-
sons, and mean (or sometimes median) reading times for each sentence are then
used as the criterion variable in the regression equation. This approach faces simi-
lar problems as ANOVA because it disregards the person level. Because variance
between persons is omitted by the aggregation procedure, the approach would be
justified only if variances and covariances between persons were homogeneous
across sentences—an assumption that is never tested and probably rarely met. In
all other cases, parameter estimation may be biased if aggregated reading times are
used. Moreover, aggregation across sentences again leads to an unnecessary loss of
information, which can make the detection of cross-level interactions impossible.

Separate Regression Models

A third approach, which by now has become the most accepted approach in
psycholinguistics and text comprehension research, makes use of a two-step pro-
cedure. The first step consists of estimating separate regression models for each
person, with sentences as the units of analysis. In a second step, the parameters es-
timated for each person are compared to determine the interindividual consistency
of estimates, or t tests are applied to test whether the mean coefficient across per-
sons is significantly different from zero (cf. the first computational procedure pro-
posed by Lorch & Myers, 1990). In some studies, an additional ANOVA or MR on
the person level is conducted with the parameter estimates obtained for each per-
son as dependent variable, to explain interindividual variability in these estimates
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(e.g., Juhasz & Rayner, 2003; Stine-Morrow, Millinder, Pullara, & Herman, 2001;
Zwaan, 1994).

Clearly, this two-step procedure represents the closest approximation to a mul-
tilevel approach. Nevertheless, there are three interrelated arguments against the
stepwise procedure. First, the total sample of reading time data is divided into
many small subsamples (as many subsamples as there are participants in a given
study), causing the reliability of parameter estimates to decrease (i.e., standard er-
rors to increase) in comparison to estimates that exhaust the information contained
in the total sample (Raudenbush & Bryk, 2002). Stated differently, the two step-ap-
proach requires that a high number of parameters (the number of parameters in
each participant’s submodel times the number of participants) must be estimated in
step one. Given a finite set of data, a higher number of parameters to be estimated
inevitably yields less reliable estimates. Aggregating the within-person coeffi-
cients in step two does not automatically compensate for the unreliability of the co-
efficients estimated in step one. The second and related argument against the
two-step approach is that it does not account for interindividual variability in the
reliabilities of parameter estimates (at least not if the standard OLS technique is
used for parameter estimation). All parameter estimates from the first step are
weighted equally in the analyses conducted in the second step, regardless of their
standard error. For this reason, the results of the two-step approach may be biased.
Here is a simple example: Imagine 2 participants who have each read the same
three sentences. The reading times of Participant 1 are 3,000 ms, 3,100 ms, and
2,900 ms, whereas the reading times of Participant 2 are 1,000 ms, 8,000 ms, and
6,000 ms. Obviously, the 3,000-ms mean reading time of Participant 1 represents a
more reliable estimate than the 5,000-ms mean reading time for Participant 2,
which is reflected in differing standard errors for the two estimates. A two-step ap-
proach that employs OLS estimates, however, would treat the means of both par-
ticipants as equally reliable and weigh both means equally when it comes to esti-
mating the mean reading time across persons. A partial solution to this problem
would be to use a technique called weighted least squares (WLS) for the estimation
of the overall coefficients, which would take differences in the reliability of the in-
dividual parameter estimates into account (e.g., Cohen et al., 2003, chap. 4). But
still, such an analysis would not be able to handle random error on both the sen-
tence and the person level properly, which is the third argument against the
two-step regression approach.

Generally speaking, the two-step approach fails to separate the variance com-
ponents pertaining to sentence and person level in an appropriate way because
these variances are considered sequentially, not simultaneously as in hierarchical
linear models with random coefficients. In hierarchical linear models with ran-
dom coefficients, the estimation of a large number of within-person coefficients
is replaced by an estimation of parameters that describe their distribution, that is,
the mean coefficient and its variance between persons (van der Leeden, 1998).
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The estimation of parameters for individual persons is of course possible, but it
is done in a way that attenuates for their unreliability (see the Parameter Estima-
tion section).

Entering Persons as Dummy-Coded Variables
in the Regression Equation

A fourth possibility is to enter persons as dummy-coded predictor variables into
the regression model with sentence reading times as observational units (cf. the
second computational procedure in Lorch & Myers, 1990). Entering persons as
dummy-coded variables into the regression equation is a way to include the vari-
ance between the means of different persons in the model. This approach is often
called least-squares dummy variable approach or fixed-effects approach to cluster-
ing because it treats the effects of higher level units as fixed, not as random
(Snijders & Bosker, 1999, chap. 4.2). Beside this substantial difference to a hierar-
chical linear model with random coefficients, it would be quite cumbersome to
model interindividual variability in sentence-level coefficients in the least-squares
dummy variable approach. This is because the number of interaction terms neces-
sary to meet this objective would explode soon, especially if designs with several
independent variables are considered. Also, the coding system would have to be
changed from a dummy-variable coding system to a coding system that yields cen-
tered variables to avoid nonessential multicollinearity of the person predictors and
the product terms representing the interaction effects (Aiken & West, 1991; see
also the Scaling and Coding of Predictor Variables section). The situation becomes
even more complex when person-level predictors are to be included to explain
interindividual variability of sentence-level coefficients. Accordingly, the
least-squares dummy-variable approach is very rarely used in reading time re-
search.

In sum, the application of both ANOVA and MR techniques to sentence read-
ing times is likely to suffer from methodological problems and an unnecessary
loss of information. These weaknesses result from reducing the multilevel struc-
ture inherent to reading time data to just one level of analysis. None of the solu-
tions proposed to circumvent these weaknesses within the ANOVA and MR ap-
proaches are fully satisfactory. As will be shown in the next two sections,
hierarchical linear models preserve the multilevel structure of reading time data.
In contrast to ANOVA and MR techniques with OLS estimates, hierarchical lin-
ear models allow modeling error variance at both levels of analysis simulta-
neously. They not only avoid the methodological problems associated with the
more traditional methods, but open up new and attractive perspectives for read-
ing time research.
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PRINCIPLES OF HIERARCHICAL LINEAR MODELING:
A SIMPLE TWO-LEVEL EXAMPLE

This section illustrates the basic principles of hierarchical linear models in a sim-
ple two-level example with sentences as the lower level and persons as the higher
level of analysis and with sentence reading times as criterion variable. The data
come from a study where 38 psychology undergraduates read expository texts sen-
tence-by-sentence; these were presented by a moving-window technique
(self-paced, 77 sentences in total). Two independent variables, one located on the
sentence level and one on the person level, were manipulated experimentally. For
each participant, some of the sentences were modified in a way that they presented
implausible information (sentence plausibility: plausible vs. implausible sen-
tences). In addition, half of the participants were given the task of keeping in mind
as much information from the texts as possible, whereas the other half were given
the task of developing their own point of view regarding the validity of the infor-
mation presented in the text (reading goal: memorization vs. standpoint goal).

Three hypotheses were tested: (a) It was expected that readers generally allo-
cate more processing resources to sentences containing plausible information than
to sentences containing implausible information, with the consequence that im-
plausible sentences are read faster than plausible ones. Technically speaking, Hy-
pothesis 1 predicts a main effect of the sentence-level predictor sentence plausibil-
ity. (b) It was also expected that readers who follow the goal of keeping in mind as
much information as possible process the text more thoroughly than readers who
read to develop their own point of view, resulting in longer reading times for the
memorization instruction. Accordingly, Hypothesis 2 predicts a main effect of the
person-level predictor reading goal. (c) Readers who process the text with the goal
of developing their own standpoint, however, should devote additional resources to
strategic evaluative processes when they encounter implausible sentences. For this
reason, the effect predicted by Hypothesis 1 should be weakened by the standpoint
instruction. Thus, Hypothesis 3 predicts an ordinal cross-level interaction of the
person-level predictor reading goal and the sentence-level predictor sentence plau-
sibility. These hypotheses illustrate three basic types of effects, which may be
tested in multilevel models of sentence reading times. The notation used in the ex-
ample and the following parts of the article is the one proposed by Raudenbush and
Bryk (2002).

A good point to start with building a hierarchical linear model is always to set
up the simplest of all possible multilevel models, a so-called unconditional
model. An unconditional model does not contain any predictors but only an in-
tercept term plus an error term for the lowest level of analysis (“level 1” in
Raudenbush & Bryk, 2002; “individual level” in Kreft & de Leeuw, 1998), and
an error term for the next highest level of analysis (“level 2” in Raudenbush &
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Bryk, 2002; “contextual level” in Kreft & de Leeuw, 1998). The unconditional
model may be written in two parts:

Y rij 0j ij= +β , (1a)

β γ0j 0j= +00 u . (1b)

In Equation 1a, which is the sentence-level part of the unconditional model, the
double-indexed criterion variable Yij represents sentence reading times, with the
index i denoting sentences and the index j denoting persons. Accordingly, the in-
tercept β0j is the estimated mean reading time for each person, and rij is the sen-
tence-level error term. Equation 1b, which is the person-level part of the uncondi-
tional model, models the sentence-level intercept as a function of the grand-mean
intercept γ00 and a person-level error term u0j. The presence of two error terms, one
assigned to the sentence level and one for the person level, marks a distinctive fea-
ture of hierarchical linear models with random coefficients and a major difference
from traditional regression models with OLS estimation. In contrast to such mod-
els, where both variance components cannot be separated, the variances of error
terms on both levels may be estimated in hierarchical linear models. Later on in
this section, the meaning of these variance components will be discussed in more
detail. Because the unconditional model does not contain any predictors, the vari-
ances of u0j and rij together capture all of the criterion variance. The sentence-level
variance component σ2 is based on the deviances of particular sentence reading
times from their respective person mean β0j and the person-level component τ00 is
based on the deviances of particular person means from the grand mean γ00. For the
sample data, the variance σ2 of the sentence-level error term in the unconditional
model is estimated as 86416677, and the variance τ00 of the person-level error term
is estimated as 20098075 (the variances are so large because reading times were
measured in milliseconds). Using these variances, we can compute the intraclass
correlation coefficient ρ:

ρ τ τ σ= +
= +
=

00 00
2

20098075 20098075 86416677

19

( )

( )

. . (2)

The intraclass correlation coefficient is defined as the proportion of criterion vari-
ance between level-2 units; it is identical to the η2 measure, which is used in
ANOVA to denote effect sizes. In a model for sentence reading times, the intraclass
coefficient represents the proportion of variance due to differences between per-
sons in relation to the overall variance in sentence reading times. The intraclass co-
efficient of .19, which we have obtained for the sample data, indicates that a con-
siderable proportion of variance pertains to the sentence as well as the person level.
Only if the intraclass coefficient is zero or close to zero can one conclude that there
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is no criterion variance on level 2. Even in this (highly unlikely) scenario, it would
make sense to proceed with building a conditional multilevel model, that is, a mul-
tilevel model that contains predictors, instead of a one-level regression model. This
is because the slopes of any sentence-level predictors, which are included in the
model, might vary randomly or as a function of person-level predictors.

For the sample problem, we continue with a simple conditional model for the
sentence level. This model includes the continuous predictor number of syllables
to control for different lengths of sentences, represented by X1, and the dichoto-
mous predictor sentence plausibility, represented by X2, which is relevant for Hy-
potheses 1 and 3. To facilitate interpretation of coefficients, we include number of
syllables as grand-mean centered predictor, which means that it is centered around
the mean number of syllables across all sentences and persons. In this case,
grand-mean centering is equivalent to group-mean centering, that is, centering the
predictor around its person means, because the total number of syllables in the
texts was held constant for all participants (for a general discussion of centering
and coding options, see the Scaling and Coding of Predictor Variables section).
Sentence plausibility is coded with weighted-effects coding, a coding technique
that yields centered variables. Thus, the conditional model for the sentence level is

Y X X X rij 0j 1j 1ij 1 2j 2ij ij .= + − + +β β β( )
(3)

In Equation 3, the regression coefficient β1j indicates the magnitude and direction
of the relationship between number of syllables and the sentence reading times.
Due to the centering and coding options chosen for the two predictor variables, the
sentence-level intercept β0j denotes an estimate of the mean reading time for sen-
tences with an average number of syllables, with plausible and implausible sen-
tences contributing equally to the estimate. Finally, the sentence-level model con-
tains the error term rij. So far, the sentence-level model resembles an ordinary
regression model, except for one small but important detail: Just as in the uncondi-
tional model, all variables as well as the error term carry two indexes, index i,
which denotes one particular sentence, and index j, which denotes one particular
person. Both the sentence-level intercept β0j and the slopes β1j and β2j are indexed
by the letter j, which means that both sentence-level parameters are allowed to vary
between persons as the observational units on the higher level.

Consequently, the next step is to construct a person-level model for each of the
three sentence-level parameters:

β γ γ0j j j= + +00 01 0W u (4a)

β γ γ1j j 1j= + +10 11W u , (4b)

β γ γ2j j 2j= + +20 21W u . (4c)
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In the intercept model in Equation 4a, the sentence-level intercept β0j for each per-
son j is predicted by the person-level intercept γ00 and reading goal as the per-
son-level predictor Wj associated with the slope γ01, and a person-specific error
term u0j. Reading goal is included as a contrast-coded predictor (–1 for the memo-
rization goal, 1 for the standpoint goal), a coding option that yields centered vari-
ables when the sizes of the coded groups are equal (for a general discussion, see the
Scaling and Coding of Predictor Variables section). Due to the coding and scaling
options chosen for reading goal and the two sentence-level predictors, the per-
son-level intercept γ00 represents an estimate of the weighted mean of reading time
for plausible and implausible sentences with an average number of syllables. The
slope γ01 represents the direction and magnitude of the departure of the reading
goal conditions from the overall mean, that is, the main effect of the reading goal
manipulation that is relevant for Hypothesis 1. Finally, Equation 4a contains an er-
ror component u0j, which represents random, between-person fluctuation in the
sentence-level intercepts. The submodels in Equation 4b and 4c, which are the
models for the sentence-level slopes of number of syllables and sentence plausibil-
ity, include the person-level intercept γ10 and γ20, respectively, which represent the
mean effect of these sentence-level predictors, the person-level slopes γ11 and γ21,
which represent the slope of the person-level predictor reading goal, plus the error
terms u1j and u1j, which capture random, between-person fluctuations of the effects
of number of syllables and sentence plausibility between persons. Both submodels
are slope-as-outcome models because a portion of the interindividual variability in
the sentence-level slopes is to be explained by the person-level predictor reading
goal. Reading goal is again included as a contrast-coded predictor. As a conse-
quence of the coding and centering options chosen, the intercepts γ20 in Equation
4c represents the mean effect of sentence plausibility on sentence reading times,
that is, the main effect of sentence plausibility that is relevant for Hypothesis 2.
The slope γ21 describes the systematic variation of the effect of sentence plausibil-
ity as a function of reading goal. It represents the cross-level interaction of reading
goal and sentence plausibility, which is critical for Hypothesis 3. The variance of
the error component u2j captures additional random fluctuation in β2j.

The sentence-level model in Equation 3 and the three person-level models in
Equations 4a, 4b, and 4c may be written into one equation, the combined model:

Y W X X X W X Xij j 1ij 2ij j 1ij= + + − + + − +γ γ γ γ γ00 01 10 1 20 11 1( ) ( ) γ 21 2

1

W X fixed part

u u X X u X r rai

j ij

0j 1j 1ij 2j 2ij j+ + − + +( ) . ndom part (5)

The error terms u0j, u1j(X1ij – X 1 ), and u2jX2j in the random part of the combined
model represent a distinctive feature of hierarchical linear models. Because these
error terms were included in Equations 4a, 4b, and 4c the sentence-level intercept
β0j as well as the sentence-level slopes β1j and β2j are modeled as random coeffi-
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cients. Random coefficients are assumed to have a random fluctuation between ob-
servational units on the next highest level of analysis, in this case on the person
level. The random fluctuation of the sentence-level intercepts is captured in the
variance of the person-level error term u0j, which is denoted by τ00. Accordingly,
the random fluctuation of the person-level slopes for number of syllables and sen-
tence plausibility are captured in the variance of the person-level error terms u1j

and u2j, which are denoted by τ11 and τ22, respectively. The person-level error
terms are also allowed to covary. These covariances are designated with τ01, τ02,
and τ12. If, for example, persons who read more slowly (over and above what is
predicted by the sentence-level predictor reading goal) were also affected more
strongly by the number of syllables in a sentence, u0j and u1j would exhibit a posi-
tive covariation. The variances and covariances of the person-level error terms and
the variance σ2 of the sentence-level error term rij are called variance components.

In contrast to random coefficients, fixed coefficients are assumed to vary sys-
tematically across units on the higher level of analysis, and no random error term is
estimated. The choice to model coefficients as fixed or random distinguishes hier-
archical linear models from more traditional linear models with OLS estimates,
where only fixed coefficients may be included. Traditional linear models rest on
the presupposition that there is no error variance between observational units on
any but the lowest level of analysis (otherwise, the homoscedasticity assumption
of single-level models would be violated). The more complex error structure of hi-
erarchical linear models, in contrast, allows the inclusion and estimation of vari-
ance components on each level of analysis. Estimation of variance components in
models with random coefficients does not work with the OLS method. Instead, ML
techniques are most commonly used.

For the sample data, we use an estimation technique called restricted maximum
likelihood in combination with generalized least squares estimates (see the Param-
eter Estimation section). For the significance tests, we use single-parameter t tests
that are based on the ratio of the parameter and its standard error (see the Hypothe-
sis Testing section). These tests correspond to those that may be used to test single
parameters in ordinary regression models. The parameter γ01, which represents the
main effect of reading goal, is estimated as –1422, with a standard error of 689, and
it is significantly different from zero, t(36) = –2.1, p < .05 (Table 1). In line with
Hypothesis 1, the standpoint goal lead to generally faster reading compared to the
average reading time, whereas the memorization goal lead to slower reading. The
parameter γ10, which represents the main effect for number of syllables, is esti-
mated as 245 (SE = 16), t(2920) = 15.2, p < .001. Not surprisingly, the more sylla-
bles a sentence contained, the more time it took participants to read it. The parame-
ter γ20, which represents the main effect for sentence plausibility, is estimated as
–822 (SE = 232), t(2920) = –3.5, p < .01. In line with Hypothesis 2, implausible
sentences were generally read faster, whereas plausible sentences were read
slower. However, the parameter γ21, which represents the cross-level interaction of
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TABLE 1
Estimates of the Fixed Effects From a Hierarchical Linear Models Analysis of the Sample Data Compared to Estimates

From a One-Level Multiple Regression Analysis and a Two-Step Separate Regressions Analysis

Hierarchical Linear Modela One-Level Multiple Regression Two-Step Separate Regressions

Fixed Effect Coefficient SE t(df) Coefficient SE t(2920) Coefficient SE t(37)

Intercept γ00 12740 689 18.5***(36) 12741 169 75.2*** 12829 752 17.1***
Reading goal γ01 –1422 689 –2.1*(36) –1420 169 –8.4*** –1443 725 –2.0
Number of syllables γ10 245 16 15.2***(2920) 246 9 26.4*** 245 17 14.6***
Number of Syllables × Reading Goal γ11 –20 16 –1.2(2920) –19 9 –2.0* –21 17 –1.2
Sentence plausibility γ20 –822 232 –3.5**(2920) –911 266 –3.4** –830 260 –3.2**
Sentence Plausibility × Reading Goal γ21 501 232 2.2*(2920) 350 263 1.3 483 252 1.9

Note. Reading goal (contrast coding, centered): memorization goal (–1) versus standpoint goal (1); number of syllables: grand-mean centered; sentence
plausibility (weighted effects coding, centered): plausible sentences (–.42) versus implausible sentences (1).

aRestricted Maximum Likelihood/Generalized Least Squares estimates.
*p < .05. **p < .01. ***p < .001 (two-tailed).



sentence plausibility and reading goal, is estimated as 501 (SE = 232) and it is also
significant, t(2920) = 2.2, p < .05. Thus, in line with Hypothesis 3, when they read
implausible sentences, participants following the standpoint goal did not speed up
as much as participants following the memorization goal. For interpreting this in-
teraction, it is helpful to use the parameter estimates to generate predicted values
(i.e., estimated cell means) for different combinations of the interacting variables.
For ease of interpretation, we assume that number of syllables takes on a mean
value and its interaction with reading goal is zero, so that we can ignore this predic-
tor in the predictions. The following values are predicted:

1. Plausible sentence, memorization goal:
12,740 + (–1,422 × –1) + (–822 × –0.42) + (501 × –0.42 × –1) = 14,717.66

2. Plausible sentence, standpoint goal:
12,740 + (–1,422 × 1) + (–822 × -0.42) + (501 × –0.42 × 1) = 11,452.82

3. Implausible sentence, memorization goal:
12,740 + (–1,422 × –1) + (–822 × 1) + (501 × 1 × –1) = 12,839.00

4. Implausible sentence, standpoint goal:
12,740 + (–1,422 × 1) + (–822 × 1) + (501 × 1 × 1) = 10,997

The cross-level interaction is illustrated by the fact that the difference between
memorization goal and standpoint goal is much larger in plausible sentences
(3,265 ms) than it is in implausible sentences (1,842 ms).

The estimates for the variances of the person-level error terms are 18845487 for
τ00, 8722 for τ11, and 253745 for τ22. Significance tests of these variance compo-
nents are based on the χ2 statistic (see the Hypothesis Testing section). In this case,
they reveal that only τ00, the variance component of the intercept model, and τ11,
the variance component of the model for the slope of number of syllables, are sig-
nificantly different from zero, whereas τ22, the variance component of sentence
plausibility, is not. Substantially, this means that there is considerable random vari-
ation between persons for the intercept as well as for the effect that number of syl-
lables has on reading times. For the effect of sentence plausibility, however, sys-
tematic and random variation cannot be separated reliably. For this reason, we may
fix the variance component τ22 and drop the error term u2j from the model. The ran-
dom coefficient for sentence plausibility then becomes a fixed coefficient.

Some points are worth noting here that might help to elucidate the relationship
of the sample hierarchical linear model to traditional linear models. The first point
is that the person-level variance components we have just estimated do not reduce
to between-person variance estimates as they are used to construct the error terms
for the F tests in a traditional (fixed-effects) ANOVA. Rather, they represent ran-
dom fluctuation in the sentence-level intercept and sentence-level coefficients.
The person-level residuals are conceived of as randomly drawn from a larger popu-
lation and the sentence-level intercept and coefficients associated with a per-
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son-level error term are regarded as random coefficients. Note that the random part
of the model in Equation 5 would reduce to the sentence-level error term rij if all
person-level variance components were fixed to zero. In this case, the model would
still be a multilevel model (and a direct extension of the separate regressions ap-
proach mentioned in the previous section), but no longer a random coefficient
model. Instead, it would become a model with nonrandomly varying coefficients,
which could be estimated by standard OLS techniques (for a systematic account of
this type of model, see Burstein, Linn, & Capell, 1978). For the sample data, how-
ever, fixing the significant variance components to zero would introduce severe
bias into the results, as will be illustrated in the following section.

COMPARISON OF THE SAMPLE HIERARCHICAL
LINEAR MODEL TO OTHER METHODS

The previous sections argued that hierarchical linear models are often preferable to
traditional linear models such as ANOVA and MR. There are cases, of course, in
which these methods will lead to similar conclusions, but for the majority of
cases—whenever the variance in reading times is distributed over more than one
level—they may produce more or less different results. Especially when effects
have to be modeled as random, the results of a hierarchical linear models analysis
may be expected to differ from those of the more traditional methods that are re-
stricted to modeling fixed effects. This section exemplifies this point by comparing
the results of the sample hierarchical linear model devised in the previous section
to the results of three well-established competitors: (a) a mixed-factors ANOVA
based on reading times aggregated across sentences, (b) an MR analysis with all
sentence reading times treated as independent observations, and (c) an MR analy-
sis based on separate regression models for different persons.

An ANOVA based on reading times that are aggregated across sentences re-
quires controlling for sentence length, that is, number of syllables. The most ade-
quate approach advocated in the literature involves conducting separate simple re-
gressions for each person with the number of syllables as predictor, and then
aggregating the residuals from these regression analyses. In a mixed-factors
ANOVA based on these residuals, only the strong main effect for sentence plausi-
bility was significant, F1(1, 36) = 13.1, p < .01, η2 = .27. Plausible sentences were
read slower (M = 458, SE = 94) than implausible sentences (M = –773, SE = 252).
Neither the main effect of reading goal, F1(1, 36) = 1.7, p > .05, nor the interaction
of sentence plausibility and reading goal were significant, F1(1, 36) = 3.8, p > .05.
Thus, two of the effects that were significant in the hierarchical linear models anal-
ysis were not detected by ANOVA. There are two likely and related causes for this
relative lack of power. The first one is the loss of information due to the aggrega-
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tion procedure, and the second one is the failure of ANOVA to separate variance
pertaining to the person and the sentence level in an appropriate way.

For the MR analysis with OLS estimates and sentence reading times treated as
independent observations, all predictor variables were coded in the same way as in
the hierarchical linear models analysis and were entered simultaneously into the
model to allow direct comparisons with the parameter estimates of the full hierar-
chical linear model devised in the previous section (Table 1). There was a strong
main effect for number of syllables—b = 246, SE = 9, t(2920) = 26.4, p < .001—
and weaker but significant main effects for reading goal—b = –1420, SE = 169,
t(2920) = –8.4, p < .001—and sentence plausibility—b = –911, SE = 266, t(2920)
= -3.4, p < .01. The interaction term of sentence plausibility and reading goal,
which was significant in the hierarchical linear models analysis, failed to reach sig-
nificance in the MR analysis—b = 350, SE = 263, t(2920) = 1.3, p > .05. Instead,
the unexpected interaction of reading goal and number of syllables was signifi-
cant—b = –19, SE = 9, t(2920) = –2.0, p < .05. Compared to the hierarchical linear
models analysis, the sentence-level MR analysis overestimated the slope for the
main effect of sentence plausibility and underestimated the interaction effect of
sentence plausibility and reading goal. Moreover, the standard errors of four pa-
rameters, the intercept, and the main effects for reading goal and number of sylla-
bles as well as the interaction of reading goal and number of syllables, were notice-
ably underestimated, in one case leading to a false positive error. These differences
result from the less complex error structure of the sentence-level MR analysis. The
two random effects that were significant in the full hierarchical linear model can-
not be included in a single-level MR analysis with OLS estimates, with the inevita-
ble consequence of a misspecified model.

For the MR approach based on separate regression analyses, all predictors were
again coded in the same way as in the hierarchical linear models analysis to allow
direct comparisons (Table 1). In a first step, separate regression analyses were con-
ducted for each participant, with number of syllables and sentence plausibility en-
tered simultaneously. The average intercept was 12829 (SE = 725), the average
slope for number of syllables was 245 (SE = 17), and the average slope for sentence
plausibility was –830 (SE = 260). All three coefficients were significantly different
from zero—for all tests: |t|(37) > 3.1, p < .01. Thus, the separate regressions ap-
proach indicated main effects for both sentence-level predictors. In the next step,
person-level models were employed to test for the main effect of reading goal
(with the sentence-level intercept as criterion variable) and the interaction effect of
reading goal with number of syllables and sentence plausibility (with the slope of
sentence plausibility as criterion variable). In these analyses, neither the main ef-
fect of reading goal (b = –1443, SE = 725) nor the interaction effect with sentence
plausibility (b = 448, SE = 252) were significant—for both tests: |t|(37) < 2.0, p >
.05. Thus, although the separate regressions approach may be regarded as the
strongest competitor of a hierarchical linear models analysis, it failed to detect two
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of the effects that were significant in the hierarchical linear models analysis. Table
1 shows that the two-step analysis slightly overestimates the slopes. The standard
errors, however, are considerably overestimated, too, which may lead to false neg-
ative errors in hypothesis tests. From a methodological as well as an
epistemological perspective, falsely concluding that a hypothesis is not valid may
be just as harmful as falsely accepting a hypothesis as being valid. Moreover, it is
always desirable to use the most precise data analysis methods available. For these
reasons, the sample data strongly underscore the demand for using multilevel anal-
yses analyzing reading times.

HIERARCHICAL LINEAR MODELS
FOR READING TIME DATA: BASIC ISSUES

This part of the article attempts to provide a more detailed idea of how the applica-
tion of hierarchical linear models to reading times works in practice. A number of
basic issues central to every study that involves multilevel models will be dis-
cussed. These issues include a general strategy for exploratory model building, a
description of the assumptions that characterize a well-specified model, the impor-
tant aspects of scaling and coding of predictor variables, parameter estimation, hy-
pothesis testing, and the relation of sample sizes and power. The following com-
ments are intended to give reading time researchers practical guidelines and clues
for orientation in this rather complex field. Therefore, they represent a practical ad-
vance organizer rather than a substitute for more general introductions into the
topic.

Model Building and Assumptions
Underlying Hierarchical Linear Models

Hierarchical linear models provide very flexible means for model building. One
part of this flexibility stems from the opportunity to introduce several predictor
variables on each level and from the option to build models which encompass more
than two levels—provided that the data set is structured in an appropriate way and
that it contains enough information (see the Power and Required Sample Sizes sec-
tion). For the two-level case, the general formulation of a level-1 model (sentence-
level model, cf. Equation 3) with Q predictor variables is

Y X X X rij 0j 1j 1ij 2j 2ij Qj Qij ij= + + + + +β β β βK . (6)

The corresponding general level-2 models (person-level models, cf. Equation 4)
with a maximum of S predictor variables each are
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Note that the level-1 model in Equation 6 as well as the level-2 models in Equation
7 may include main effect terms and within-level interaction terms. Furthermore,
the predictors in models on both levels may be scaled in different ways, which may
change the meaning of intercepts and slopes (see the Scaling and Coding of Predic-
tor Variables section). The general model can be adapted very flexibly by fixing
parameters in particular submodels to zero. The person-level models, for example,
can differ in the set of person-level predictor variables (although it is customary to
include the same higher level predictors in all submodels). Moreover, the inclusion
of an error term uqj is optional. In case this error term is omitted the respective coef-
ficient βqj turns from a random coefficient into a fixed coefficient.

The high degree of flexibility also implies that researchers have to face a num-
ber of decisions: Which variables should be included in the model(s), which coeffi-
cients should be modeled as fixed or random, and when should within-level inter-
actions or cross-level interactions be modeled? Starting from sound theoretical
assumptions is always important, but most model building will rely on exploration
to a certain degree. Hox (1995) has proposed a stepwise strategy for exploratory
model building that starts with an unconditional model as introduced here in the
context of the sample hierarchical linear model. Following Hox (1995), the next
steps would consist of setting up a sentence-level model, first without and then
with variance components (random effects). Finally, person-level predictors, in-
cluding cross-level interactions, may be included. Ranging from the simplest pos-
sible model to ever more complex models, these models form a sequence of nested
models. At each step, the improvement of model fit achieved by adding more ele-
ments to the model may be tested for significance (see the Hypothesis Testing sec-
tion). The result of all model building efforts—be they exploratory or theory
driven—should be a well-specified model, which fulfills some general assump-
tions concerning the residuals on different levels. These assumptions are briefly
outlined in the next section.

General Assumptions Underlying the Application
of Hierarchical Linear Models

Similar to single-level linear models with OLS estimates, the application of hierar-
chical linear models rests on a number of basic assumptions. Violation of these as-
sumptions leads to a misspecification of the model. As a consequence, parameter
estimates and their standard errors may be biased, which also renders significance
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tests invalid (see Raudenbush & Bryk, 2002, chap. 9). The assumptions underlying
hierarchical linear models refer to the distributions of the error components as well
as to their relationships to each other and to the predictor variables. For the level-1
error component rij, normal distribution and a constant variance within each
level-2 unit (homoscedasticity) are required. Similarly, the joint distribution of the
level-2 error components uqj is assumed to be multivariate normal with a constant
covariance matrix across level-2 units. In addition, all error components should be
independent of the predictor variables and have population means of zero.

In principle, several factors may cause violations of these assumptions. Impor-
tant explanatory variables might be disregarded in the model, or a randomly vary-
ing slope could be erroneously specified as a fixed effect. In addition, a cross-level
interaction or a within-level interaction, which is in fact present, might be missing
from the model. Some of the predictor variables (e.g., interindividual difference
measures on the person level) might be associated with a large amount of measure-
ment error. Furthermore, there might be anomalies in the reading time data, such as
outliers. Another possible source for misspecification is the fact that distributions
of reading times are typically highly skewed to the right, with a peak in the lower
range and a long tail.

The best way to avoid problems with misspecification is to design experiments
carefully, to check the data for outliers and other anomalies, and to guide model
building by a thorough step-by-step strategy starting from the sentence level. A
transformation, which makes the reading time distribution more symmetric, is of-
ten an effective remedy for problems with the distributions of residuals. Both re-
ciprocal and logarithmic transformations (Ratcliff, 1993), for example, may re-
duce biasing influences of outliers and help to avoid misspecification due to
nonnormality of residuals. In addition to these general recommendations, Snijders
and Bosker (1999) and Snijders (in press) proposed several checks for possible vi-
olations of model assumptions. At this point, it should also be noted that the logic
of hierarchical models can in principle be extended to the analysis of nonmetric
criterion variables such as binary or multicategory data (Snijders & Bosker, 1999,
chap. 14; Wong & Mason, 1985). These types of analysis rest on assumptions dif-
ferent from those on which hierarchical linear models are based.

Scaling and Coding of Predictor Variables

In multilevel models, scaling of predictor variables is of much greater importance
than in MR models that contain main effects only. The scaling of predictors on
lower levels has a huge impact on the interpretation, the estimation, and signifi-
cance tests of parameters on the same and higher levels. This section first sketches
basic scaling options for continuous variables. Subsequently, the effects of differ-
ent ways of coding categorical variables are briefly discussed.
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Scaling of continuous variables. For continuous predictors on lower lev-
els, centering around the mean of a higher level unit (“group-mean centering”) and
centering around the mean of the total sample (“grand-mean centering”) are the
most prevalent scaling options (Kreft, de Leeuw, & Aiken, 1995). Centering, that
is, transforming the original predictor variables into deviation scores by subtract-
ing a mean value, is especially useful for altering the meaning of the intercept term.
In models with raw (i.e., noncentered) scores as predictor variables, the lower level
intercept corresponds to the expected value of the criterion Yij when all predictors
take on the value zero. For many predictor variables (in reading time research and
elsewhere in psychology), however, the value zero can take on a problematic
meaning. It does not make sense, for example, to estimate the mean reading time of
sentences without any syllables.

Group-mean centering is one way to solve this problem. If every level-1 predic-
tor is centered in this way, the level-1 intercept will represent the expected criterion
values for the level-2 units when all level-1 predictors take on mean values relative
to the respective level-2 unit. This form of centering is useful if there are theoreti-
cal reasons to omit predictor variance between level-2 units from the model. There
is, however, the possibility of reintroducing this variance by entering the respective
means of the level-1 predictors as predictor variables on level-2. Consider, for ex-
ample, participants in a nonexperimental or not perfectly balanced study who have
not read identical text materials. In a study like this, there is variance in sen-
tence-level predictors like the number of syllables between sentences as well as be-
tween persons. Using group-mean centering for number of syllables omits the be-
tween-person portion of this variance on the sentence level, but we can reintroduce
it into the model by using the mean number of syllables as a person-level predictor.
Nevertheless it is important to keep in mind that centering of predictors around the
mean of higher level units usually does not yield models that are statistically equiv-
alent to models with the raw scores as predictors (for a discussion see Kreft et al.,
1995).

The situation is different for the second common centering option, grand-mean
centering. This technique is useful especially if interactions between predictors lo-
cated on the same level are included because nonessential multicollinearity of
main effect and interaction terms can be avoided (see Aiken & West, 1991). If ev-
ery level-1 predictor is centered around the grand mean, the level-1 intercept will
represent the expected value of the level-2 units when all level-1 predictors take on
the mean of the total sample of reading times (adjusted means). Grand-mean cen-
tering yields models that are statistically equivalent to a raw score model regarding
model fit, residuals, and predicted values (Kreft et al., 1995). Still, both models
will produce different estimates for the intercepts and, consequently, estimates as
well as significance tests for parameters in the intercept model will differ.

In experimental reading time studies with standardized text material (identical
or strictly parallel texts for each participant), there should not be any between-per-
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son variance in sentence-level predictors (cf., e.g., the sample hierarchical linear
model introduced in the Principles of Hierarchical Linear Modeling section). In
this case, group-mean centering and grand-mean centering are equivalent options.
But even for experimental studies, centering around the person mean (with reintro-
ducing the between-person variance on the person level) can be a reasonable op-
tion, whenever experimental conditions are not based on the same text material for
every participant. This is the case, for example, if texts and experimental condi-
tions are combined in an incomplete, unbalanced design. In this case, centering
sentence-level predictors like number of syllables around the respective person
means, and reintroducing the person means as person-level predictors, provides an
appropriate way of controlling for differences in the texts that otherwise contribute
to error variance.

Coding of categorical predictors. To investigate the influence of categori-
cal variables in regression models, whether measured or manipulated experimen-
tally, a coding scheme has to be used, with k-1 separate predictors for a categorical
variable with k categories. Each of the coding methods that have been proposed in
the context of traditional linear models (see, e.g., Cohen et al., 2003, chap. 8) is
also applicable to hierarchical linear models. Again, the major considerations in
the choice of a coding scheme refer to the meaning of parameters at the various lev-
els. Among the most common methods are dummy coding, contrast coding, and
effects coding.

In dummy coding, one category serves as a reference category and is assigned the
value 0 in all code variables. As a consequence, the intercept of a sentence-level
model with a dummy-coded categorical variable (and no other predictors) will rep-
resent the expected value of reading times for sentences from the reference category,
and the level-1 regression coefficients express the deviations of sentences belonging
to one of the other categories from sentences belonging to the reference category.
Contrast coding involves the construction of centered and orthogonal coding vari-
ables, which provide flexible means to test a priori hypotheses about differences be-
tween categories (e.g., levels of an experimental factor such as the reading goal ma-
nipulation in the sample hierarchical linear model). The intercept in models with
contrast coded variables contains the unweighted means across all observational
units. Effects coding is chosen if differences of categories from the overall mean of
the criterion variable are of interest. There are two different variants of effects cod-
ing, unweighted and weighted effects coding. In weighted effects coding, the code
variablesareconstructed inaway that reflects the relativecategorysizes (e.g., differ-
ent proportions of sentence types as in the sample hierarchical linear model). As a
consequence, weighted effects codes are centered variables. In a sentence-level
modelwithweightedeffectscodes, the interceptwill represent theweightedmeanof
all sentences, and the regression coefficients for the code variables will express devi-
ations of sentences belonging to one sentence type from the weighted mean.
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Throughout the discussion of coding options and their effects on the interpreta-
tion of intercepts and coefficients, it has been assumed that the codes are entered
into the model in the way they have been constructed, which means as centered
predictors when a coding option yields centered variables (such as in weighted ef-
fects coding), or as uncentered predictors when a coding option yields uncentered
variables (such as dummy coding). This procedure, which has also been applied in
the sample hierarchical linear model (see the Principles of Hierarchical Linear
Modeling section), is most common because it leaves the standard interpretation of
coefficients intact.

Parameter Estimation

In hierarchical linear models, parameters are estimated simultaneously on all levels
of analysis. In addition to intercept and slope coefficients, variance components
(variances as well as covariances of higher level error terms) have to be estimated
when themodelcontains randomcoefficients.WithOLStechniques, it is impossible
to estimate these variance components. Instead, maximum likelihood (ML) tech-
niques in combination with so called empirical Bayes estimates and an iterative al-
gorithm (Expectation-Maximization algorithm) are commonly used (Goldstein,
2003; Raudenbush & Bryk, 2002). The principle of empirical Bayes-estimates im-
plies that lower levelparameters (e.g., thesentence-levelcoefficients),whichbelong
to different higher level units (e.g., different persons), are weighted by their reliabil-
ity. The weighing procedure corrects estimates from small or heterogeneous
subsamples in the direction of the average estimates for the total sample (shrinkage;
for illustrations seeKreft&deLeeuw,1998).Forexample,parameterestimates fora
participant of whom reading times from only few sentences are available, or partici-
pants who show a strong and irregular intraindividual variance in reading times, are
corrected by using the estimates of the whole sample, and thus get a relatively low
weight in the overall solution.

For the ML estimation, there are two different principles. Full maximum likeli-
hood (FML) follows the target criterion to maximize the combined likelihood of
regression coefficients (fixed parameters) and variance components. In restricted
maximum likelihood (RML), the target criterion refers to the likelihood of the esti-
mates for the variance components only (Raudenbush & Bryk, 2002), which
means that the regression coefficients in the fixed part are not estimated. Thus,
RML is combined with generalized least squares (GLS) estimation for the regres-
sion coefficients.

Which of the available techniques should be employed for estimating
variance components? There are no clear guidelines under which circum-
stances FML or RML are to be preferred for estimating the variance components.
FML may lead to biased (underestimated) variance components when the number
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of higher level units is small (Raudenbush & Bryk, 2002), but it has the advantage
of allowing for hypothesis tests that compare the variance components of nested
models differing in the fixed effects (see the Hypothesis Tests section). In most
cases, FML and RML will produce highly similar results.

Which of the available techniques should be employed for estimating
fixed effects? For the fixed effects, that is the regression coefficients in the fixed
part of the model, simulation studies show that OLS, GLS, and ML techniques
generally produce unbiased estimates, but that OLS seems to be less efficient than
the other two methods, which means that far more observations are needed to pro-
duce precise estimates. For this reason, OLS cannot be recommended for
small-scale research as reading time studies are likely to be. If intraclass correla-
tion is present, OLS has the additional drawback that it leads to an underestimation
of standard errors, thus yielding significance tests that are too liberal. In contrast,
both the ML and GLS techniques generally result in accurate standard errors for
fixed parameters (for overviews of simulation studies, see Hox, 1998; Kreft,
1996). Because reading time data tend to have a substantial intraclass correlation,
ML or GLS are again to be preferred for the estimation of fixed effects.

Hypothesis Testing

Hierarchical linear models provide sophisticated options for hypothesis testing.
Hypotheses concerning individual parameters can be tested by comparing the ratio
of the parameter and its standard error to a standard normal distribution or to a stu-
dent t distribution (Hox, 1998). Tests for random effects commonly use a statistic
that follows a chi-square distribution (Raudenbush & Bryk, 2002, chap. 3). Akin to
traditional linear models, hierarchical linear models also permit hypotheses con-
cerning multiple parameters (in the form of a general linear hypothesis, Searle,
1971), which may be tested by a chi-square distributed statistic. Last but not least,
there is the possibility of conducting individual and multiple parameter tests by
comparing nested models. In nested models, one model is the “full” model,
whereas another model is nested under the full model by fixing one or more param-
eters to zero. Significance tests are based on the chi-square distributed difference
between the deviances of the two models. Deviance is an indicator of misfit, which
is derived from the likelihoods of the ML estimates. Models differing in the fixed
part can be compared only if FML estimates (but not RML estimates) were used
for parameter estimation. Nested models have an important function in model
building because the increment of more complex models can easily be tested
against the fit of simpler models. By this means it is possible to test a sequence of
nested models, starting from an unconditional model and stepwise proceeding
from there on to ever more complex models that include sentence and person-level
predictors.
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Power and Required Sample Sizes

Similar to the situation in traditional linear models, the power of significance
tests in hierarchical linear models is closely linked to the efficiency of parameter
estimates: the smaller the variance of a particular estimate, the higher the proba-
bility that an invalid null hypothesis concerning this parameter will in fact be re-
jected. The power of significance tests in hierarchical linear models, however,
depends on a complex pattern of factors: Apart from the magnitude of the effect
in the population, the technique used for parameter estimation, the number of
observations on both levels, and the intraclass correlation can make a difference
(cf. Kreft & de Leeuw, 1998, chap. 5). Nevertheless, analytical considerations
and the results of simulation studies allow at least some general suggestions as
to how many observations will usually be needed to obtain sufficient power for
simple two-level models.

For significance tests for level-1 coefficients, power increases with the total
number of observations on level 1. Thus, the number of sentences is important for
testing hypotheses concerning the influence of sentence-level predictors. Larger
numbers of observations on level 1 are needed if the intraclass correlation is high.
Likewise, for the power of significance tests for regression coefficients on level 2,
large numbers of observations on this level are important. Thus, a reading time
study investigating the influence of person variables should be based on a suffi-
ciently high number of participants: It is not possible to compensate for a low num-
ber of observations on the person level by having each participant read more sen-
tences. Based on simulation studies by Bassiri (1988) and van der Leeden and
Busing (1994), Kreft (1996) proposed the “30/30 rule” for simple two-level mod-
els with cross-level interactions and ML estimates. According to the 30/30 rule,
sufficient power for significance tests, including those for detecting cross-level in-
teractions, is given if at least 30 observations on level 1, which are nested within 30
units on level 2, are available. There is, however, some evidence from simulation
studies that estimates of fixed coefficients as well as variance components on level
2 are more efficient if the level-1 observations are distributed over many level-2
units, rather than having few level-2 units containing many level-1 observations
(e.g., Mok, 1995). Moreover, efficient estimates of variance components on level 2
seem to require larger samples on level 2 than estimates of fixed effects (e.g., Maas
& Hox, 2002). Based on these and similar findings, Hox (1998) has recommended
two different rules of thumb for studies concerned with fixed effects including
cross-level interactions and studies concerned with variance components. Accord-
ing to the “50/20” rule, cross-level interactions should be tested with at least 50
units on level 2, each with an average size of 20 observations on level 1. For studies
concerned with variance components on level 2, Hox (1998) has proposed an even
more asymmetric “100/10” rule, with 100 level-2 units and 10 level-1 observations
nested within each level-2 unit.
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In reading time research, the theoretical interest will often be set on the fixed
coefficients rather than the variance components. The 50 participants called for by
Hox’s (1998) 50/20 rule correspond to typical sample sizes in experiments in text
comprehension. In most studies, participants will read far more than 20 sentences,
which leads to more efficient estimates for sentence-level coefficients. Hence, it is
unlikely that the sample sizes required for conducting multilevel studies will im-
pose extra time and costs on researchers. Some cautionary remarks are appropri-
ate, though. First of all, the simulation studies carried out so far are based on rather
simple models, with few parameters on each level. An especially high number of
error components on the person level can dramatically increase the sample size
needed because in addition to the variances, the covariances of the error compo-
nents have to be estimated, too. Furthermore, as explained earlier, for various rea-
sons such as a high intraclass correlation, a small effect size in the population, or
multicollinearity of the predictor variables, a larger sample size may be needed to
detect a particular effect. Precise rules for computing optimal sample sizes are not
yet available for hierarchical linear models.

CONCLUSION

The first aim of this article was to demonstrate that hierarchical linear models
are a viable statistical tool for the analysis of reading time data. In many situa-
tions, hierarchical linear models are superior to ANOVA or MR techniques.
They take the multilevel structure of reading time data into account and avoid
methodological problems associated with the traditional single-level methods.
Although developed in the substantially different context of educational and so-
cial research, hierarchical linear models also open up new perspectives for
psycholinguistic and text comprehension research by providing straightforward
ways to test cross-level interactions of person and sentence characteristics. For
this reason, multilevel models promise fruitful applications especially in re-
search following a constructionist approach where assumptions concerning in-
teractions of person characteristics (including reader expectations and reading
goals) and text characteristics form the core of constructionist theories of text
comprehension (e.g., Graesser, Singer, & Trabasso, 1994). The second aim of
this article was to provide text comprehension researchers with some basic
knowledge necessary to apply hierarchical linear models to reading time data.
Despite the relative complexity of some aspects of the method (like model build-
ing or parameter estimation), it presents a workable—and often better—alterna-
tive to the statistical methods commonly used in reading time research. Suffi-
cient power is attainable with sample sizes comparable to those of typical
reading time studies.
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There are a number of accessible introductory texts on hierarchical linear mod-
els, both concise primers (Kreft & de Leeuw, 1998; Nezlek, 2001, 2003) and com-
prehensive monographs (Goldstein, 2003; Raudenbush & Bryk, 2002; Snijders &
Bosker, 1999). Blozis and Cudeck (1999) extended hierarchical linear models to
handle latent variables at the second level. Because measurements of individual
differences are often associated with large measurement error, the possibility of in-
cluding latent variables at the person level is an attractive extension for researchers
who are interested primarily in individual differences (e.g., reading skills) and
their relationship to reading times. In addition to good introductory texts,
user-friendly computer programs are available, providing many analysis options.
The most common computer programs are HLM 6 (Raudenbush, Bryk, Cheong, &
Congdon, 2004; see also http://www.ssicentral.com/hlm/) and MLwiN (Rasbash
et al., 2000; see also http://www.mlwin.com/). A program called MPlus (Muthén
& Muthén, 2003; see also http://www.statmodel.com/) allows multilevel modeling
with latent variables on the second level.

From a theoretical perspective, it would even be valuable to enlarge the multi-
level perspective by including intermediate levels between persons and sentences.
All major theories of text comprehension presuppose that the processing of indi-
vidual text segments depends partly on how the preceding text has been processed.
Semantic and syntactic integration of words within sentences as well as many
types of inferences (e.g., local and global bridging inferences) are examples for
comprehension processes that include words or sentences as components of larger
semantic structures. Accordingly, the allocation of processing resources to differ-
ent sentences and, thus, their reading times may vary with the semantic context in
which a sentence is encountered. As a consequence, sentence reading times col-
lected for naturalistic texts are invariably structured by multiple levels beyond the
distinction of sentence level and person level: Not only sentence characteristics but
also properties of higher level semantic structures such as the paragraph or the text
in which a sentence is encountered may contribute to variance in reading times.
Reading times recorded for individual words or phrases imply an additional level
of analysis that is nested within sentences. Provided that a data set contains suffi-
cient information, hierarchical linear models permit investigations that include
these additional levels of analysis.
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